Skip to main content
Log in

Stochastic process-based degradation modeling and RUL prediction: from Brownian motion to fractional Brownian motion

  • Review
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

Brownian motion (BM) has been widely used for degradation modeling and remaining useful life (RUL) prediction, but it is essentially Markovian. This implies that the future state in a BM-based degradation process relies only on its current state, independent of the past states. However, some practical industrial devices such as Li-ion batteries, ball bearings, turbofans, and blast furnace walls show degradations with long-range dependence (LRD), where the future degradation states depend on both the current and past degradation states. This type of degradation naturally brings two interesting problems, that is, how to model the degradations and how to predict their RULs. Recently, in contrast to the work that uses only BM, fractional Brownian motion (FBM) is introduced to model practical degradations. The most important feature of the FBM-based degradation models is the ability to characterize the non-Markovian degradations with LRD. Although FBM is an extension of BM, it is neither a Markovian process nor a semimartingale. Therefore, how to obtain the first passage time of an FBM-based degradation process has become a challenging task. In this paper, a review of the transition of RUL prediction from BM to FBM is provided. The peculiarities of FBM when addressing the LRD inherent in some practical degradations are discussed. We first review the BM-based degradation models of the past few decades and then give details regarding the evolution of FBM-based research. Interestingly, the existing BM-based models scarcely consider the effect of LRD on the prediction of RULs. Two practical cases illustrate that the newly developed FBM-based models are more generalized and suitable for predicting RULs than the BM-based models, especially for degradations with LRD. Along with the direction of FBM-based RUL prediction, we also introduce some important and interesting problems that require further study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pecht M. Prognostics and Health Management of Electronics. Hoboken: Wiley Online Library, 2008

    Book  Google Scholar 

  2. Caroni C. First Hitting Time Regression Models: Lifetime Data Analysis Based on Underlying Stochastic Processes. Hoboken: John Wiley & Sons, 2017

    Book  MATH  Google Scholar 

  3. Si X S, Wang W, Hu C H, et al. Remaining useful life estimation—A review on the statistical data driven approaches. Eur J Operational Res, 2011, 213: 1–14

    Article  MathSciNet  Google Scholar 

  4. Ahmadzadeh F, Lundberg J. Remaining useful life estimation: review. Int J Syst Assur Eng Manag, 2014, 5: 461–474

    Article  Google Scholar 

  5. Ye Z S, Xie M. Stochastic modelling and analysis of degradation for highly reliable products. Appl Stochastic Model Bus Ind, 2015, 31: 16–32

    Article  MathSciNet  Google Scholar 

  6. Hu C, Zhou Z, Zhang J, et al. A survey on life prediction of equipment. Chin J Aeronaut, 2015, 28: 25–33

    Article  Google Scholar 

  7. Tao L, Ma J, Cheng Y, et al. A review of stochastic battery models and health management. Renew Sustain Energy Rev, 2017, 80: 716–732

    Article  Google Scholar 

  8. Alaswad S, Xiang Y. A review on condition-based maintenance optimization models for stochastically deteriorating system. Rel Eng Syst Saf, 2017, 157: 54–63

    Article  Google Scholar 

  9. Shahraki A F. A review on degradation modelling and its engineering applications. Int J Perform Eng, 2017, 13: 299

    Google Scholar 

  10. Zhang Z, Si X, Hu C, et al. Degradation modeling-based remaining useful life estimation: a review on approaches for systems with heterogeneity. Proc Instit Mech Eng Part O-J Risk Reliab, 2015, 229: 343–355

    Google Scholar 

  11. Lee M Y, Tang J. A modified EM-algorithm for estimating the parameters of inverse Gaussian distribution based on time-censored Wiener degradation data. Stat Sin, 2007, 17: 873–893

    MathSciNet  MATH  Google Scholar 

  12. Si X S, Wang W, Hu C H, et al. Remaining useful life estimation based on a nonlinear diffusion degradation process. IEEE Trans Rel, 2012, 61: 50–67

    Article  Google Scholar 

  13. Wei M, Chen M, Zhou D. Multi-sensor information based remaining useful life prediction with anticipated performance. IEEE Trans Rel, 2013, 62: 183–198

    Article  Google Scholar 

  14. Tseng S T, Tang J, Ku I H. Determination of burn-in parameters and residual life for highly reliable products. Naval Res Logist, 2003, 50: 1–14

    Article  MathSciNet  MATH  Google Scholar 

  15. Tang J, Su T S. Estimating failure time distribution and its parameters based on intermediate data from a Wiener degradation model. Naval Res Logist, 2008, 55: 265–276

    Article  MathSciNet  MATH  Google Scholar 

  16. Gebraeel N Z, Lawley M A, Li R, et al. Residual-life distributions from component degradation signals: a Bayesian approach. IIE Trans, 2005, 37: 543–557

    Article  Google Scholar 

  17. Wang Y, Peng Y, Zi Y, et al. A two-stage data-driven-based prognostic approach for bearing degradation problem. IEEE Trans Ind Inf, 2016, 12: 924–932

    Article  Google Scholar 

  18. Zhang Z X, Si X S, Hu C H. An age- and state-dependent nonlinear prognostic model for degrading systems. IEEE Trans Rel, 2015, 64: 1214–1228

    Article  Google Scholar 

  19. Singleton R K, Strangas E G, Aviyente S. Extended Kalman filtering for remaining-useful-life estimation of bearings. IEEE Trans Ind Electron, 2015, 62: 1781–1790

    Article  Google Scholar 

  20. Li N, Lei Y, Lin J, et al. An improved exponential model for predicting remaining useful life of rolling element bearings. IEEE Trans Ind Electron, 2015, 62: 7762–7773

    Article  Google Scholar 

  21. M’sabah H L, Azzedine B. Degradation model of the bearings by Wiener process. Mechanics, 2016, 22: 225–228

    Article  Google Scholar 

  22. Orchard M E, Hevia-Koch P, Zhang B, et al. Risk measures for particle-filtering-based state-of-charge prognosis in lithium-ion batteries. IEEE Trans Ind Electron, 2013, 60: 5260–5269

    Article  Google Scholar 

  23. Tang S, Yu C, Wang X, et al. Remaining useful life prediction of lithium-ion batteries based on the Wiener process with measurement error. Energies, 2014, 7: 520–547

    Article  Google Scholar 

  24. Feng J, Kvam P, Tang Y. Remaining useful lifetime prediction based on the damage-marker bivariate degradation model: a case study on lithium-ion batteries used in electric vehicles. Eng Failure Anal, 2016, 70: 323–342

    Article  Google Scholar 

  25. Zhang Z X, Si X S, Hu C H, et al. A prognostic model for stochastic degrading systems with state recovery: application to Li-ion batteries. IEEE Trans Rel, 2017, 66: 1293–1308

    Article  Google Scholar 

  26. Ray A, Tangirala S. Stochastic modeling of fatigue crack dynamics for on-line failure prognostics. IEEE Trans Contr Syst Technol, 1996, 4: 443–451

    Article  Google Scholar 

  27. Ebrahimi N. System reliability based on diffusion models for fatigue crack growth. Naval Res Logist, 2005, 52: 46–57

    Article  MathSciNet  MATH  Google Scholar 

  28. Li C J, Lee H. Gear fatigue crack prognosis using embedded model, gear dynamic model and fracture mechanics. Mech Syst Signal Process, 2005, 19: 836–846

    Article  Google Scholar 

  29. Xi X, Chen M, Zhou D. Remaining useful life prediction for degradation processes with memory effects. IEEE Trans Rel, 2017, 66: 751–760

    Article  Google Scholar 

  30. Zhang H, Chen M, Xi X, et al. Remaining useful life prediction for degradation processes with long-range dependence. IEEE Trans Rel, 2017, 66: 1368–1379

    Article  Google Scholar 

  31. Xi X, Chen M, Zhang H, et al. An improved non-Markovian degradation model with long-term dependency and item-to-item uncertainty. Mech Syst Signal Process, 2018, 105: 467–480

    Article  Google Scholar 

  32. Zhang H, Zhou D, Chen M, et al. Predicting remaining useful life based on a generalized degradation with fractional Brownian motion. Mech Syst Signal Process, 2019, 115: 736–752

    Article  Google Scholar 

  33. Beran J, Sherman R, Taqqu M S, et al. Long-range dependence in variable-bit-rate video traffic. IEEE Trans Commun, 1995, 43: 1566–1579

    Article  Google Scholar 

  34. Beran J. Long-range dependence. In: Encyclopedia of Statistical Sciences. Hoboken: John Wiley & Sons, Inc. 1997

    Google Scholar 

  35. Hurst H E. Long term storage capacity of reservoirs. ASCE Trans, 1951, 116: 770–808

    Google Scholar 

  36. Zhang Z, Si X, Hu C, et al. Degradation data analysis and remaining useful life estimation: a review on Wiener-process-based methods. Eur J Oper Res, 2018, 271: 775–796

    Article  MathSciNet  MATH  Google Scholar 

  37. Zhang H, Zhou D, Chen M, et al. FBM-based remaining useful life prediction for degradation processes with long-range dependence and multiple modes. IEEE Trans Rel, 2019, 68: 1021–1033

    Article  Google Scholar 

  38. Tweedie M C K. Inverse statistical variates. Nature, 1945, 155: 453

    Article  MathSciNet  MATH  Google Scholar 

  39. Cox D R. The Theory of Stochastic Processes. Boca Raton: Routledge, 2017

    Book  Google Scholar 

  40. Wang W, Carr M, Xu W, et al. A model for residual life prediction based on Brownian motion with an adaptive drift. Microelectron Reliab, 2011, 51: 285–293

    Article  Google Scholar 

  41. Huang Z, Xu Z, Ke X, et al. Remaining useful life prediction for an adaptive skew-Wiener process model. Mech Syst Signal Process, 2017, 87: 294–306

    Article  Google Scholar 

  42. Mishra S, Vanli O A. Remaining useful life estimation with Lamb-wave sensors based on Wiener process and principal components regression. J Nondestruct Eval, 2016, 35: 11

    Article  Google Scholar 

  43. Zhang Z X, Si X S, Hu C H, et al. An adaptive prognostic approach incorporating inspection influence for deteriorating systems. IEEE Trans Rel, 2019, 68: 302–316

    Article  Google Scholar 

  44. Shemehsavar S, Amini M. Failure inference and optimization for step stress model based on bivariate Wiener model. Commun Stat-Simul Comput, 2016, 45: 130–151

    Article  MathSciNet  MATH  Google Scholar 

  45. Xi X P, Chen M Y, Zhou D H. Remaining useful life prediction for multi-component systems with hidden dependencies. Sci China Inf Sci, 2019, 62: 022202

    Article  MathSciNet  Google Scholar 

  46. Feng J, Sun Q, Jin T. Storage life prediction for a high-performance capacitor using multi-phase Wiener degradation model. Commun Stat-Simul Comput, 2012, 41: 1317–1335

    Article  MathSciNet  MATH  Google Scholar 

  47. Gao H, Cui L, Dong Q. Reliability modeling for a two-phase degradation system with a change point based on a Wiener process. Reliab Eng Syst Saf, 2020, 193: 106601

    Article  Google Scholar 

  48. Chakraborty S, Gebraeel N, Lawley M, et al. Residual-life estimation for components with non-symmetric priors. IIE Trans, 2009, 41: 372–387

    Article  Google Scholar 

  49. Bian L, Gebraeel N. Computing and updating the first-passage time distribution for randomly evolving degradation signals. IIE Trans, 2012, 44: 974–987

    Article  Google Scholar 

  50. Si X S, Wang W, Hu C H, et al. A Wiener-process-based degradation model with a recursive filter algorithm for remaining useful life estimation. Mech Syst Signal Process, 2013, 35: 219–237

    Article  Google Scholar 

  51. Hao H, Su C. A Bayesian framework for reliability assessment via Wiener process and MCMC. Math Problems Eng, 2014, 2014: 1–8

    MathSciNet  MATH  Google Scholar 

  52. Zhang H, Hu C, Kong X, et al. A model for residual life prediction based on Brownian motion in framework of similarity. Asian J Control, 2016, 18: 1406–1416

    Article  MathSciNet  MATH  Google Scholar 

  53. Wen Y, Wu J, Das D, et al. Degradation modeling and RUL prediction using Wiener process subject to multiple change points and unit heterogeneity. Reliab Eng Syst Saf, 2018, 176: 113–124

    Article  Google Scholar 

  54. Zhang J X, Hu C H, He X, et al. A novel lifetime estimation method for two-phase degrading systems. IEEE Trans Rel, 2019, 68: 689–709

    Article  Google Scholar 

  55. Si X S, Chen M Y, Wang W, et al. Specifying measurement errors for required lifetime estimation performance. Eur J Oper Res, 2013, 231: 631–644

    Article  MathSciNet  MATH  Google Scholar 

  56. Pan Y, Hong R, Chen J, et al. A hybrid DBN-SOM-PF-based prognostic approach of remaining useful life for wind turbine gearbox. Renew Energy, 2020, 152: 138–154

    Article  Google Scholar 

  57. Ke X, Xu Z, Wang W, et al. Remaining useful life prediction for non-stationary degradation processes with shocks. Proc Instit Mech Eng Part O-J Risk Reliab, 2017, 231: 469–480

    Google Scholar 

  58. Peng C-Y, Tseng S-T. Mis-specification analysis of linear degradation models. IEEE Trans Rel, 2009, 58: 444–455

    Article  Google Scholar 

  59. Peng C-Y, Tseng S-T. Statistical lifetime inference with skew-Wiener linear degradation models. IEEE Trans Rel, 2013, 62: 338–350

    Article  Google Scholar 

  60. Peng C Y, Hsu S C. A note on a Wiener process with measurement error. Appl Math Lett, 2012, 25: 729–732

    Article  MathSciNet  MATH  Google Scholar 

  61. Jin G, Matthews D E, Zhou Z. A Bayesian framework for on-line degradation assessment and residual life prediction of secondary batteries inspacecraft. Reliab Eng Syst Saf, 2013, 113: 7–20

    Article  Google Scholar 

  62. Tang S, Guo X, Zhou Z. Mis-specification analysis of linear Wiener process-based degradation models for the remaining useful life estimation. Proc Instit Mech Eng Part O-J Risk Reliab, 2014, 228: 478–487

    Google Scholar 

  63. Si X S, Wang W, Hu C H, et al. Estimating remaining useful life with three-source variability in degradation modeling. IEEE Trans Rel, 2014, 63: 167–190

    Article  Google Scholar 

  64. Zhang Z X, Si X S, Hu C H, et al. Planning repeated degradation testing for products with three-source variability. IEEE Trans Rel, 2016, 65: 640–647

    Article  Google Scholar 

  65. Gebraeel N. Sensory-updated residual life distributions for components with exponential degradation patterns. IEEE Trans Automat Sci Eng, 2006, 3: 382–393

    Article  Google Scholar 

  66. Elwany A H, Gebraeel N Z. Sensor-driven prognostic models for equipment replacement and spare parts inventory. IIE Trans, 2008, 40: 629–639

    Article  Google Scholar 

  67. Elwany A, Gebraeel N. Real-time estimation of mean remaining life using sensor-based degradation models. J Manuf Sci Eng, 2009, 131: 051005

    Article  Google Scholar 

  68. Si X S, Wang W, Chen M Y, et al. A degradation path-dependent approach for remaining useful life estimation with an exact and closed-form solution. Eur J Oper Res, 2013, 226: 53–66

    Article  MathSciNet  MATH  Google Scholar 

  69. Yu Y, Si X S, Hu C H, et al. Online remaining-useful-life estimation with a Bayesian-updated expectation-conditional-maximization algorithm and a modified Bayesian-model-averaging method. Sci China Inf Sci, 2021, 64: 112205

    Article  MathSciNet  Google Scholar 

  70. Wang D, Tsui K L. Two novel mixed effects models for prognostics of rolling element bearings. Mech Syst Signal Process, 2018, 99: 1–13

    Article  Google Scholar 

  71. Liu Z, Cheng Y, Wang P, et al. A method for remaining useful life prediction of crystal oscillators using the Bayesian approach and extreme learning machine under uncertainty. Neurocomputing, 2018, 305: 27–38

    Article  Google Scholar 

  72. Park C, Padgett W J. Accelerated degradation models for failure based on geometric Brownian motion and Gamma processes. Lifetime Data Anal, 2005, 11: 511–527

    Article  MathSciNet  MATH  Google Scholar 

  73. Chiang J Y, Lio Y L, Tsai T R. Degradation tests using geometric Brownian motion process for lumen degradation data. Qual Reliab Eng Int, 2015, 31: 1797–1806

    Article  Google Scholar 

  74. Whitmore G A, Schenkelberg F. Modelling accelerated degradation data using Wiener diffusion with a time scale transformation. Lifetime Data Anal, 1997, 3: 27–45

    Article  MATH  Google Scholar 

  75. Doksum K A, Hóyland A. Models for variable-stress accelerated life testing experiments based on Wiener processes and the inverse Gaussian distribution. Technometrics, 1992, 34: 74–82

    Article  MATH  Google Scholar 

  76. Xu D, Wei Q D, Chen Y X, et al. Reliability prediction using physics-statistics-based degradation model. IEEE Trans Compon Packag Manufact Technol, 2015, 5: 1573–1581

    Article  Google Scholar 

  77. Tang S, Guo X, Yu C, et al. Accelerated degradation tests modeling based on the nonlinear Wiener process with random effects. Math Problems Eng, 2014, 2014: 1–11

    Google Scholar 

  78. Wang X. Wiener processes with random effects for degradation data. J Multivariate Anal, 2010, 101: 340–351

    Article  MathSciNet  MATH  Google Scholar 

  79. Ye Z S, Wang Y, Tsui K L, et al. Degradation data analysis using Wiener processes with measurement errors. IEEE Trans Rel, 2013, 62: 772–780

    Article  Google Scholar 

  80. Xu A, Shen L, Wang B, et al. On modeling bivariate Wiener degradation process. IEEE Trans Rel, 2018, 67: 897–906

    Article  Google Scholar 

  81. Ye Z S, Chen N, Shen Y. A new class of Wiener process models for degradation analysis. Reliab Eng Syst Saf, 2015, 139: 58–67

    Article  Google Scholar 

  82. Huang Z, Xu Z, Wang W, et al. Remaining useful life prediction for a nonlinear heterogeneous Wiener process model with an adaptive drift. IEEE Trans Rel, 2015, 64: 687–700

    Article  Google Scholar 

  83. Wang X, Jiang P, Guo B, et al. Real-time reliability evaluation with a general Wiener process-based degradation model. Qual Reliab Eng Int, 2014, 30: 205–220

    Article  Google Scholar 

  84. Li J, Wang Z, Liu X, et al. A Wiener process model for accelerated degradation analysis considering measurement errors. Microelectron Reliab, 2016, 65: 8–15

    Article  Google Scholar 

  85. Li J, Wang Z, Zhang Y, et al. Degradation data analysis based on a generalized Wiener process subject to measurement error. Mech Syst Signal Process, 2017, 94: 57–72

    Article  Google Scholar 

  86. Wang Z, Zhang Y, Wu Q, et al. Degradation reliability modeling based on an independent increment process with quadratic variance. Mech Syst Signal Process, 2016, 70–71: 467–483

    Article  Google Scholar 

  87. Wang Z, Li J, Ma X, et al. A generalized Wiener process degradation model with two transformed time scales. Qual Reliab Eng Int, 2017, 33: 693–708

    Article  Google Scholar 

  88. Tseng S, Peng C. Stochastic diffusion modeling of degradation data. J Data Sci, 2007, 5: 315–333

    Article  Google Scholar 

  89. Wang Z Q, Hu C H, Fan H D. Real-time remaining useful life prediction for a nonlinear degrading system in service: application to bearing data. IEEE/ASME Trans Mechatron, 2018, 23: 211–222

    Article  Google Scholar 

  90. Wang Z Q, Hu C H, Wang W, et al. An additive Wiener process-based prognostic model for hybrid deteriorating systems. IEEE Trans Rel, 2014, 63: 208–222

    Article  Google Scholar 

  91. Si X S. An adaptive prognostic approach via nonlinear degradation modeling: application to battery data. IEEE Trans Ind Electron, 2015, 62: 5082–5096

    Article  Google Scholar 

  92. Wang H, Ma X, Zhao Y. An improved Wiener process model with adaptive drift and diffusion for online remaining useful life prediction. Mech Syst Signal Process, 2019, 127: 370–387

    Article  Google Scholar 

  93. Wang D, Tsui K L. Brownian motion with adaptive drift for remaining useful life prediction: revisited. Mech Syst Signal Process, 2018, 99: 691–701

    Article  Google Scholar 

  94. Wang D, Zhao Y, Yang F, et al. Nonlinear-drifted Brownian motion with multiple hidden states for remaining useful life prediction of rechargeable batteries. Mech Syst Signal Process, 2017, 93: 531–544

    Article  Google Scholar 

  95. Zhai Q, Ye Z S. RUL prediction of deteriorating products using an adaptive Wiener process model. IEEE Trans Ind Inf, 2017, 13: 2911–2921

    Article  Google Scholar 

  96. Son K L, Fouladirad M, Barros A, et al. Remaining useful life estimation based on stochastic deterioration models: a comparative study. Reliab Eng Syst Saf, 2013, 112: 165–175

    Article  Google Scholar 

  97. Lei Y, Li N, Lin J. A new method based on stochastic process models for machine remaining useful life prediction. IEEE Trans Instrum Meas, 2016, 65: 2671–2684

    Article  Google Scholar 

  98. Dong G, Chen Z, Wei J, et al. Battery health prognosis using Brownian motion modeling and particle filtering. IEEE Trans Ind Electron, 2018, 65: 8646–8655

    Article  Google Scholar 

  99. Zheng J F, Si X S, Hu C H, et al. A nonlinear prognostic model for degrading systems with three-source variability. IEEE Trans Rel, 2016, 65: 736–750

    Article  Google Scholar 

  100. Zhang Z, Hu C, Si X, et al. Stochastic degradation process modeling and remaining useful life estimation with flexible random-effects. J Franklin Institute, 2017, 354: 2477–2499

    Article  MathSciNet  MATH  Google Scholar 

  101. Huang J, Golubović D S, Koh S, et al. Lumen degradation modeling of white-light LEDs in step stress accelerated degradation test. Reliab Eng Syst Saf, 2016, 154: 152–159

    Article  Google Scholar 

  102. Zhang J X, Hu C H, He X, et al. Lifetime prognostics for deteriorating systems with time-varying random jumps. Reliab Eng Syst Saf, 2017, 167: 338–350

    Article  Google Scholar 

  103. Wang Z Q, Hu C H, Si X S, et al. Remaining useful life prediction of degrading systems subjected to imperfect maintenance: application to draught fans. Mech Syst Signal Process, 2018, 100: 802–813

    Article  Google Scholar 

  104. Cui L, Huang J, Li Y. Degradation models with Wiener diffusion processes under calibrations. IEEE Trans Rel, 2016, 65: 613–623

    Article  Google Scholar 

  105. Feng L, Wang H, Si X, et al. A state-space-based prognostic model for hidden and age-dependent nonlinear degradation process. IEEE Trans Automat Sci Eng, 2013, 10: 1072–1086

    Article  Google Scholar 

  106. Wang X, Balakrishnan N, Guo B. Residual life estimation based on nonlinear-multivariate Wiener processes. J Stat Comput Simul, 2015, 85: 1742–1764

    Article  MathSciNet  MATH  Google Scholar 

  107. Huang J, Golubović D S, Koh S, et al. Degradation modeling of mid-power white-light LEDs by using Wiener process. Opt Express, 2015, 23: A966

    Article  Google Scholar 

  108. Wang X, Balakrishnan N, Guo B. Residual life estimation based on a generalized Wiener degradation process. Reliab Eng Syst Saf, 2014, 124: 13–23

    Article  Google Scholar 

  109. Laurenciu N C, Cotofana S D. A nonlinear degradation path dependent end-of-life estimation framework from noisy observations. Microelectron Reliab, 2013, 53: 1213–1217

    Article  Google Scholar 

  110. Li N, Lei Y, Guo L, et al. Remaining useful life prediction based on a general expression of stochastic process models. IEEE Trans Ind Electron, 2017, 64: 5709–5718

    Article  Google Scholar 

  111. Li N, Lei Y, Yan T, et al. A Wiener-process-model-based method for remaining useful life prediction considering unit-to-unit variability. IEEE Trans Ind Electron, 2019, 66: 2092–2101

    Article  Google Scholar 

  112. Deng Y, Barros A, Grall A. Degradation modeling based on a time-dependent Ornstein-Uhlenbeck process and residual useful lifetime estimation. IEEE Trans Rel, 2016, 65: 126–140

    Article  Google Scholar 

  113. Rishel R. Controlled wear process: modeling optimal control. IEEE Trans Automat Contr, 1991, 36: 1100–1102

    Article  MathSciNet  Google Scholar 

  114. Lefebvre M. Mean first-passage time to zero for wear processes. Stochastic Model, 2010, 26: 46–53

    Article  MathSciNet  MATH  Google Scholar 

  115. Lefebvre M, Aoudia D A. Two-dimensional diffusion processes as models in lifetime studies. Int J Syst Sci, 2012, 43: 1943–1949

    Article  MathSciNet  MATH  Google Scholar 

  116. Lim H, Yum B J. Optimal design of accelerated degradation tests based on Wiener process models. J Appl Stat, 2011, 38: 309–325

    Article  MathSciNet  MATH  Google Scholar 

  117. Bian L, Gebraeel N. Stochastic methodology for prognostics under continuously varying environmental profiles. Stat Analy Data Min, 2013, 6: 260–270

    Article  MathSciNet  MATH  Google Scholar 

  118. Si X S, Hu C H, Kong X, et al. A residual storage life prediction approach for systems with operation state switches. IEEE Trans Ind Electron, 2014, 61: 6304–6315

    Article  Google Scholar 

  119. Bian L, Gebraeel N, Kharoufeh J P. Degradation modeling for real-time estimation of residual lifetimes in dynamic environments. IIE Trans, 2015, 47: 471–486

    Article  Google Scholar 

  120. Li N, Gebraeel N, Lei Y, et al. Remaining useful life prediction of machinery under time-varying operating conditions based on a two-factor state-space model. Reliab Eng Syst Saf, 2019, 186: 88–100

    Article  Google Scholar 

  121. Jin G, Matthews D, Fan Y, et al. Physics of failure-based degradation modeling and lifetime prediction of the momentum wheel in a dynamic covariate environment. Eng Failure Anal, 2013, 28: 222–240

    Article  Google Scholar 

  122. Tsai T-R, Lin C-W, Sung Y-L, et al. Inference from lumen degradation data under Wiener diffusion process. IEEE Trans Rel, 2012, 61: 710–718

    Article  Google Scholar 

  123. Liao H, Tian Z. A framework for predicting the remaining useful life of a single unit under time-varying operating conditions. IIE Trans, 2013, 45: 964–980

    Article  Google Scholar 

  124. Liu T, Sun Q, Feng J, et al. Residual life estimation under time-varying conditions based on a Wiener process. J Stat Comput Simul, 2017, 87: 211–226

    Article  MathSciNet  MATH  Google Scholar 

  125. Liao C M, Tseng S T. Optimal design for step-stress accelerated degradation tests. IEEE Trans Rel, 2006, 55: 59–66

    Article  Google Scholar 

  126. Sun F, Liu L, Li X, et al. Stochastic modeling and analysis of multiple nonlinear accelerated degradation processes through information fusion. Sensors, 2016, 16: 1242

    Article  Google Scholar 

  127. Liao H, Elsayed E A. Reliability inference for field conditions from accelerated degradation testing. Naval Res Logist, 2006, 53: 576–587

    Article  MathSciNet  MATH  Google Scholar 

  128. Liu L, Li X Y, Jiang T M, et al. Utilizing accelerated degradation and field data for life prediction of highly reliable products. Qual Reliab Eng Int, 2016, 32: 2281–2297

    Article  Google Scholar 

  129. Liu L, Li X Y, Sun F Q, et al. A general accelerated degradation model based on the Wiener process. Materials, 2016, 9: 981

    Article  Google Scholar 

  130. Chen Z, Li S, Pan E. Optimal constant-stress accelerated degradation test plans using nonlinear generalized Wiener process. Math Problem Eng, 2016, 2016: 1–11

    MathSciNet  MATH  Google Scholar 

  131. Peng W, Li Y F, Mi J, et al. Reliability of complex systems under dynamic conditions: a Bayesian multivariate degradation perspective. Reliab Eng Syst Saf, 2016, 153: 75–87

    Article  Google Scholar 

  132. Hao L, Liu K, Gebraeel N, et al. Controlling the residual life distribution of parallel unit systems through workload adjustment. IEEE Trans Automat Sci Eng, 2017, 14: 1042–1052

    Article  Google Scholar 

  133. Saxena A, Goebel K. Turbofan engine degradation simulation data set. NASA Ames Prognostics Data Repository, 2008. http://ti.arc.nasa.gov/project/prognostic-data-repository

  134. Lee L, Qiu H, Yu G, et al. Rexnord technical services, bearing data set. NASA Ames Prognostics Data Repository. 2007. http://ti.arc.nasa.gov/project/prognostic-data-repository

  135. Saha B, Goebel K. Battery data set. NASA Ames Prognostics Data Repository. 2007. http://ti.arc.nasa.gov/project/prognostic-data-repository

  136. Mandelbrot B B, van Ness J W. Fractional Brownian motions, fractional noises and applications. SIAM Rev, 1968, 10: 422–437

    Article  MathSciNet  MATH  Google Scholar 

  137. Doukhan P, Oppenheim G, Taqqu M. Theory and Applications of Long-Range Dependence. Boston: Birkhäuser, 2002

    MATH  Google Scholar 

  138. Guérin T, Levernier N, Bénichou O, et al. Mean first-passage times of non-Markovian random walkers in confinement. Nature, 2016, 534: 356–359

    Article  Google Scholar 

  139. Sottinen T. Fractional Brownian motion, random walks and binary market models. Finance Stochast, 2001, 5: 343–355

    Article  MathSciNet  MATH  Google Scholar 

  140. Zhang H, Mo Z, Wang J, et al. Nonlinear-drifted fractional Brownian motion with multiple hidden state variables for remaining useful life prediction of lithium-ion batteries. IEEE Trans Rel, 2020, 69: 768–780

    Article  Google Scholar 

  141. Mandelbrot B B, Wallis J R. Robustness of the rescaled range R/S in the measurement of noncyclic long run statistical dependence. Water Resour Res, 1969, 5: 967–988

    Article  Google Scholar 

  142. Montanari A, Taqqu M S, Teverovsky V. Estimating long-range dependence in the presence of periodicity: an empirical study. Math Comput Model, 1999, 29: 217–228

    Article  MATH  Google Scholar 

  143. Flandrin P. Wavelet analysis and synthesis of fractional Brownian motion. IEEE Trans Inform Theor, 1992, 38: 910–917

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by National Key Research and Development Program of China (Grant No. 2018YFC0809300), National Natural Science Foundation of China (Grant Nos. 61903326, 61873143), China Postdoctoral Science Foundation (Grant No. 2019M662051), and Zhejiang Province Postdoctoral Science Foundation (Grant No. ZJ2019093).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maoyin Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, H., Chen, M., Shang, J. et al. Stochastic process-based degradation modeling and RUL prediction: from Brownian motion to fractional Brownian motion. Sci. China Inf. Sci. 64, 171201 (2021). https://doi.org/10.1007/s11432-020-3134-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11432-020-3134-8

Keywords

Navigation