Skip to main content
Log in

Recursive filtering for nonlinear systems subject to measurement outliers

  • Research Paper
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

In this paper, an innovative recursive filtering algorithm (RFA) is proposed for a class of nonlinear systems (NSs) subject to multiplicative noises (MNs) and measurement outliers (MOs). Initially, the MNs are employed to formulate the random influence on the NSs with the stochastic noises. Next, the outlier phenomenon could occur unpredictably during measurement transmission. Then, a self-adaptive saturation function is introduced to the constructed filter to mitigate the influence of MOs on the filter performance. In this paper, we design a resistant-outlier filter for NSs with MNs and MOs, and the filter gain ensures that the trace of the filtering error covariance matrix is minimized by solving the constructed Riccati-like difference equations. Moreover, the exponential boundedness of the filtering error in the sense of mean square is analyzed. Finally, the feasibility of the proposed RFA is illustrated by a simulation example when the MOs occur.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kalman R E. A new approach to linear filtering and prediction problems. J Basic Eng, 1960, 82: 35–45

    Article  MathSciNet  Google Scholar 

  2. Wan E A, Merwe R V D. The unscented Kalman filter for nonlinear estimation. In: Proceedings of IEEE Adaptive Systems for Signal Processing, Communications, and Control Symposium, 2000

  3. Wang X M, He X K, Bao Y, et al. Parameter estimates of Heston stochastic volatility model with MLE and consistent EKF algorithm. Sci China Inf Sci, 2018, 61: 042202

    Article  Google Scholar 

  4. Li Q, Shen B, Wang Z D, et al. Event-triggered H state estimation for state-saturated complex networks subject to quantization effects and distributed delays. J Franklin Inst, 2018, 355: 2874–2891

    Article  MathSciNet  Google Scholar 

  5. Sheng S Y, Zhang X M. H filtering for T-S fuzzy complex networks subject to sensor saturation via delayed information. IET Control Theory Appl, 2017, 11: 2370–2382

    Article  MathSciNet  Google Scholar 

  6. Zhao S Y, Shmaliy Y S, Shi P, et al. Fusion Kalman/UFIR filter for state estimation with uncertain parameters and noise statistics. IEEE Trans Ind Electron, 2017, 64: 3075–3083

    Article  Google Scholar 

  7. Caballero-Águila R, Hermoso-Carazo A, Linares-Pérez J. New distributed fusion filtering algorithm based on covariances over sensor networks with random packet dropouts. Int J Syst Sci, 2017, 48: 1805–1817

    Article  MathSciNet  Google Scholar 

  8. Julier S J, Uhlmann J K. New extension of the Kalman filter to nonlinear systems. In: Proceedings of SPIE 3068, Signal Processing, Sensor Fusion, and Target Recognition VI, 1997. 182–193

  9. Bai W Y, Xue W C, Huang Y, et al. On extended state based Kalman filter design for a class of nonlinear time-varying uncertain systems. Sci China Inf Sci, 2018, 61: 042201

    Article  MathSciNet  Google Scholar 

  10. Mao W H, Deng F Q, Wan A H. Robust H2/H global linearization filter design for nonlinear stochastic time-varying delay systems. Sci China Inf Sci, 2016, 59: 032204

    Article  Google Scholar 

  11. Liu Y J, Tong S C. Barrier lyapunov functions for nussbaum gain adaptive control of full state constrained nonlinear systems. Automatica, 2017, 76: 143–152

    Article  MathSciNet  Google Scholar 

  12. Hu J, Wang Z D, Shen B, et al. Quantised recursive filtering for a class of nonlinear systems with multiplicative noises and missing measurements. Int J Control, 2013, 86: 650–663

    Article  MathSciNet  Google Scholar 

  13. Rajasekaran P, Satyanarayana N, Srinath M. Optimum linear estimation of stochastic signals in the presence of multiplicative noise. IEEE Trans Aerosp Electron Syst, 1971, 7: 462–468

    Article  MathSciNet  Google Scholar 

  14. Dong H L, Wang Z D, Ding S X, et al. Event-based H filter design for a class of nonlinear time-varying systems with fading channels and multiplicative noises. IEEE Trans Signal Process, 2015, 63: 3387–3395

    Article  MathSciNet  Google Scholar 

  15. Liu W. Optimal estimation for discrete-time linear systems in the presence of multiplicative and time-correlated additive measurement noises. IEEE Trans Signal Process, 2015, 63: 4583–4593

    Article  MathSciNet  Google Scholar 

  16. Zhang L X, Zhu Y Z, Shi P, et al. Resilient asynchronous H filtering for markov jump neural networks with unideal measurements and multiplicative noises. IEEE Trans Cybern, 2015, 45: 2840–2852

    Article  Google Scholar 

  17. Li Y Y, Karimi H R, Zhong M Y, et al. Fault detection for linear discrete time-varying systems with multiplicative noise: the finite-horizon case. IEEE Trans Circ Syst I, 2018, 65: 3492–3505

    MathSciNet  MATH  Google Scholar 

  18. Song X M, Park J H. Linear minimum mean-square estimation for discrete-time measurement-delay systems with multiplicative noise and Markov jump. IET Control Theory Appl, 2016, 10: 1161–1169

    Article  MathSciNet  Google Scholar 

  19. Yang F, Dong H L, Wang Z D, et al. A new approach to non-fragile state estimation for continuous neural networks with time-delays. Neurocomputing, 2016, 197: 205–211

    Article  Google Scholar 

  20. Gao H Y, Han F, Jiang B, et al. Recursive filtering for time-varying systems under duty cycle scheduling based on collaborative prediction. J Franklin Inst, 2020, 357: 13189–13204

    Article  MathSciNet  Google Scholar 

  21. Wang C, Han F, Zhang Y, et al. An SAE-based resampling SVM ensemble learning paradigm for pipeline leakage detection. Neurocomputing, 2020, 403: 237–246

    Article  Google Scholar 

  22. Li J H, Dong H L, Wang Z D, et al. Partial-neurons-based passivity-guaranteed state estimation for neural networks with randomly occurring time delays. IEEE Trans Neural Netw Learn Syst, 2020, 31: 3747–3753

    Article  MathSciNet  Google Scholar 

  23. Gao Y B, Luo W S, Liu J X, et al. Integral sliding mode control design for nonlinear stochastic systems under imperfect quantization. Sci China Inf Sci, 2017, 60: 120206

    Article  MathSciNet  Google Scholar 

  24. Li X R, Han F, Hou N, et al. Set-membership filtering for piecewise linear systems with censored measurements under Round-Robin protocol. Int J Syst Sci, 2020, 51: 1578–1588

    Article  MathSciNet  Google Scholar 

  25. Peng H, Lu R Q, Xu Y, et al. Dissipative non-fragile state estimation for Markovian complex networks with coupling transmission delays. Neurocomputing, 2018, 275: 1576–1584

    Article  Google Scholar 

  26. Rakkiyappan R, Sivaranjani K. Sampled-data synchronization and state estimation for nonlinear singularly perturbed complex networks with time-delays. Nonlinear Dyn, 2016, 84: 1623–1636

    Article  MathSciNet  Google Scholar 

  27. Zhou D H, Qin L G, He X, et al. Distributed sensor fault diagnosis for a formation system with unknown constant time delays. Sci China Inf Sci, 2018, 61: 112205

    Article  Google Scholar 

  28. Meinhold R J, Singpurwalla N D. Robustification of Kalman filter models. J Am Stat Assoc, 1989, 84: 479–486

    Article  MathSciNet  Google Scholar 

  29. Huang Y L, Zhang Y G, Xu B, et al. A new outlier-robust student’s t based gaussian approximate filter for cooperative localization. IEEE/ASME Trans Mechatron, 2017, 22: 2380–2386

    Article  Google Scholar 

  30. de Palma D, Indiveri G. Output outlier robust state estimation. Int J Adapt Control Signal Proces, 2017, 31: 581–607

    Article  MathSciNet  Google Scholar 

  31. Alessandri A, Zaccarian L. Results on stubborn Luenberger observers for linear time-invariant plants. In: Proceedings of European Control Conference (ECC), Linz, 2015. 2920–2925

  32. Alessandri A, Zaccarian L. Stubborn state observers for linear time-invariant systems. Automatica, 2018, 88: 1–9

    Article  MathSciNet  Google Scholar 

  33. Gao H Y, Dong H L, Wang Z D, et al. An event-triggering approach to recursive filtering for complex networks with state saturations and random coupling strengths. IEEE Trans Neural Netw Learn Syst, 2020, 31: 4279–4289

    Article  MathSciNet  Google Scholar 

  34. Li W L, Sun J, Jia Y M, et al. Variance-constrained state estimation for nonlinear complex networks with uncertain coupling strength. Digit Signal Process, 2017, 67: 107–115

    Article  Google Scholar 

  35. Wang Y Y, Xie L H, de Souza C E. Robust control of a class of uncertain nonlinear systems. Syst Control Lett, 1992, 19: 139–149

    Article  MathSciNet  Google Scholar 

  36. Wang L C, Wang Z D, Huang T W, et al. An event-triggered approach to state estimation for a class of complex networks with mixed time delays and nonlinearities. IEEE Trans Cybern, 2016, 46: 2497–2508

    Article  Google Scholar 

  37. Reif K, Gunther S, Yaz E, et al. Stochastic stability of the discrete-time extended Kalman filter. IEEE Trans Autom Control, 1999, 44: 714–728

    Article  MathSciNet  Google Scholar 

  38. Liu S. Schur complement. In: Encyclopedia of Statistical Sciences. Hoboken: John Wiley & Sons, 2008

    Google Scholar 

Download references

Acknowledgements

This work was supported in part by National Natural Science Foundation of China (Grant Nos. 61873058, 61933007) and in part by Natural Science Foundation of Heilongjiang Province of China (Grant No. ZD2019F001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongyu Gao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, B., Gao, H., Han, F. et al. Recursive filtering for nonlinear systems subject to measurement outliers. Sci. China Inf. Sci. 64, 172206 (2021). https://doi.org/10.1007/s11432-020-3135-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11432-020-3135-y

Keywords

Navigation