Skip to main content
Log in

Multicriteria optimization problems of finite horizon stochastic cooperative linear-quadratic difference games

  • Research Paper
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

This paper investigates the Pareto optimality of the regular and the indefinite stochastic cooperative linear-quadratic difference games in a finite time horizon. We derive a general form and a linear property of the solution to the linear stochastic difference system by defining several sequences of bounded and linear operators. The performance criteria’s convexity can be guaranteed naturally under the weighted matrices’ constraints for the regular cooperative game, and the weighting technique can well characterize the Pareto optimality. We also establish a novel convexity criterion for the cost functionals of the indefinite cooperative game, in which we find that the minimization of the performance criteria’s weighted sum is equivalent to the Pareto optimal strategies. To derive all the Pareto optimal strategies and solutions, we present a computing algorithm using the weighted difference Riccati equation and the weighted difference Lyapunov equation for the regular and the indefinite cases. We present a practical example in the economy to validate the results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chen S P, Li X J, Zhou X Y. Stochastic linear quadratic regulators with indefinite control weight costs. SIAM J Control Optim, 1998, 36: 1685–1702

    Article  MathSciNet  MATH  Google Scholar 

  2. Rami M A, Chen X, Zhou X Y. Discrete-time indefinite LQ control with state and control dependent noises. J Glob Optim, 2002, 23: 245–265

    Article  MathSciNet  MATH  Google Scholar 

  3. Zhang W H, Xie L H, Chen B S. Stochastic H2/H Control: A Nash Game Approach. Boca Raton: CRC Press, 2017

    Book  Google Scholar 

  4. Edgeworth F Y. Mathematical Psychics: An Essay on the Application of Mathematics to the Moral Sciences. London: Kegan Paul, 1881

    MATH  Google Scholar 

  5. Pareto V. Cours d’Économic Politique. Lausanne: Duncker & Humblot, 1896

    Google Scholar 

  6. Pareto V. Manual of Political Economy. Oxford: Oxford University Press, 1927

    Google Scholar 

  7. Engwerda J C. The regular convex cooperative linear quadratic control problem. Automatica, 2008, 44: 2453–2457

    Article  MathSciNet  MATH  Google Scholar 

  8. Engwerda J C. Necessary and sufficient conditions for pareto optimal solutions of cooperative differential games. SIAM J Control Optim, 2010, 48: 3859–3881

    Article  MathSciNet  MATH  Google Scholar 

  9. Reddy P V, Engwerda J C. Pareto optimality in infinite horizon linear quadratic differential games. Automatica, 2013, 69: 1705–1714

    Article  MathSciNet  MATH  Google Scholar 

  10. Reddy P V, Engwerda J C. Necessary and sufficient conditions for pareto optimality in infinite horizon cooperative differential games. IEEE Trans Automat Contr, 2014, 59: 2536–2542

    Article  MathSciNet  MATH  Google Scholar 

  11. Peng C C, Zhang W H. Multiobjective dynamic optimization of cooperative difference games in infinite horizon. IEEE Trans Syst Man Cybern Syst, 2021, 51: 6669–6680

    Article  Google Scholar 

  12. Zhu H N, Zhang C K. Finite horizon linear quadratic dynamic games for discrete-time stochastic systems with N-players. Oper Res Lett, 2016, 44: 307–312

    Article  MathSciNet  MATH  Google Scholar 

  13. Ge Y Y, Liu X K, Li Y. Pareto optimal control of the mean-field stochastic systems by adaptive dynamic programming algorithm. ISA Trans, 2020, 102: 81–90

    Article  Google Scholar 

  14. Chen W Y, Chen B S, Chen W T. Multiobjective beamforming power control for robust SINR target tracking and power efficiency in multicell MU-MIMO wireless system. IEEE Trans Veh Technol, 2020, 69: 6200–6214

    Article  Google Scholar 

  15. Chen W Y, Hsieh P H, Chen B S. Multi-objective power minimization design for energy efficiency in multicell multiuser MIMO beamforming system. IEEE Trans Green Commun Netw, 2020, 40: 31–45

    Article  Google Scholar 

  16. Engwerda J C. LQ Dynamic Optimization and Differential Games. Chichester: Wiley, 2005

    Google Scholar 

  17. Cunha N O D, Polak E. Constrained minimization under vector-valued criteria in finite dimensional spaces. J Math Anal Appl, 1967, 19: 103–124

    Article  MathSciNet  MATH  Google Scholar 

  18. Yu P L. Multiple-criteria Decision Making Concepts. New York: Plenum Press, 1985

    Book  Google Scholar 

  19. Huang P Y, Wang G C, Zhang H J. A partial information linear-quadratic optimal control problem of backward stochastic differential equation with its applications. Sci China Inf Sci, 2020, 63: 192204

    Article  MathSciNet  Google Scholar 

  20. Elliott R, Li X, Ni Y H. Discrete time mean-field stochastic linear-quadratic optimal control problems. Automatica, 2013, 49: 3222–3233

    Article  MathSciNet  MATH  Google Scholar 

  21. Ni Y H, Elliott R, Li X. Discrete-time mean-field stochastic linear-quadratic optimal control problems, II: infinite horizon case. Automatica, 2015, 57: 65–77

    Article  MathSciNet  MATH  Google Scholar 

  22. Shi J T, Wang G C, Xiong J. Linear-quadratic stochastic Stackelberg differential game with asymmetric information. Sci China Inf Sci, 2017, 60: 092202

    Article  Google Scholar 

  23. Tian R, Yu Z Y, Zhang R C. A closed-loop saddle point for zero-sum linear-quadratic stochastic differential games with mean-field type. Syst Control Lett, 2020, 136: 104624

    Article  MathSciNet  MATH  Google Scholar 

  24. Xu J J, Shi J T, Zhang H S. A leader-follower stochastic linear quadratic differential game with time delay. Sci China Inf Sci, 2018, 60: 112202

    Article  MathSciNet  Google Scholar 

  25. Penrose R. A generalized inverse for matrices. Math Proc Camb Phil Soc, 1955, 51: 406–413

    Article  MATH  Google Scholar 

  26. Lin X Y, Zhang W H. A maximum principle for optimal control of discrete-time stochastic systems with multiplicative noise. IEEE Trans Automat Contr, 2015, 60: 1121–1126

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (Grant Nos. 61973198, 61633014), the Research Fund for the Taishan Scholar Project of Shandong Province of China, and SDUST Research Fund (Grant No. 2015TDJH105).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weihai Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, C., Zhang, W. Multicriteria optimization problems of finite horizon stochastic cooperative linear-quadratic difference games. Sci. China Inf. Sci. 65, 172203 (2022). https://doi.org/10.1007/s11432-020-3177-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11432-020-3177-8

Keywords

Navigation