Skip to main content
Log in

Noncertainty-equivalent observer-based noncooperative target tracking control for unmanned aerial vehicles

  • Research Paper
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

Target tracking is a typical and challenging scenario that is required to be executed by unmanned aerial vehicles (UAVs) in operational environments. This work investigates the noncooperative target tracking control problem for UAVs. An integrated model is constructed by combining the dynamics of both the line-of-sight variables and the acceleration components. Particularly, the dynamics of the acceleration components, that contain unmeasurable states, characterize the relative motion between the noncooperative target and the UAV. To estimate these states, a globally convergent observer is developed by utilizing the noncertainty-equivalent (NCE) structure. With the integrated model and the NCE observer, an outputfeedback target tracking control scheme is proposed using the dynamic surface control technique and the prescribed performance control method. Based on the Lyapunov approach, the relative spatial positions of the target and the UAV are proved to always stay within a specified operation region and ultimately converge to a small terminal region. Finally, simulation results are presented to illustrate the effectiveness of the proposed target tracking control scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lyu Y, Kang T N, Pan Q, et al. UAV sense and avoidance: concepts, technologies, and systems (in Chinese). Sci Sin Inform, 2019, 49: 520–537

    Article  Google Scholar 

  2. Kim S, Oh H, Tsourdos A. Nonlinear model predictive coordinated standoff tracking of a moving ground vehicle. J Guid Control Dyn, 2013, 36: 557–566

    Article  Google Scholar 

  3. Wang M, Zhang Y L, Dong H F, et al. Trajectory tracking control of a bionic robotic fish based on iterative learning. Sci China Inf Sci, 2020, 63: 170202

    Article  MathSciNet  Google Scholar 

  4. Yu X, Liu L. Target enclosing and trajectory tracking for a mobile robot with input disturbances. IEEE Control Syst Lett, 2017, 1: 221–226

    Article  MathSciNet  Google Scholar 

  5. Zhu P X, Ren W. Fully distributed joint localization and target tracking with mobile robot networks. IEEE Trans Contr Syst Technol, 2021, 29: 1519–1532

    Article  Google Scholar 

  6. Frew E W, Lawrence D A, Morris S. Coordinated standoff tracking of moving targets using Lyapunov guidance vector fields. J Guid Control Dyn, 2008, 31: 290–306

    Article  Google Scholar 

  7. Yoon S, Park S, Kim Y. Circular motion guidance law for coordinated standoff tracking of a moving target. IEEE Trans Aerosp Electron Syst, 2013, 49: 2440–2462

    Article  Google Scholar 

  8. Oliveira T, Aguiar A P, Encarnacao P. Moving path following for unmanned aerial vehicles with applications to single and multiple target tracking problems. IEEE Trans Robot, 2016, 32: 1062–1078

    Article  Google Scholar 

  9. Song Y D, Guo J X. Neuro-adaptive fault-tolerant tracking control of lagrange systems pursuing targets with unknown trajectory. IEEE Trans Ind Electron, 2017, 64: 3913–3920

    Article  Google Scholar 

  10. Park S. Guidance law for standoff tracking of a moving object. J Guid Control Dyn, 2017, 40: 2948–2955

    Article  Google Scholar 

  11. Yong K N, Chen M, Wu Q X. Immersion and invariance-based integrated guidance and control for unmanned aerial vehicle path following. Int J Syst Sci, 2019, 50: 1052–1068

    Article  MathSciNet  MATH  Google Scholar 

  12. Chwa D. Robust nonlinear disturbance observer based adaptive guidance law against uncertainties in missile dynamics and target maneuver. IEEE Trans Aerosp Electron Syst, 2018, 54: 1739–1749

    Article  Google Scholar 

  13. Padhi R, Chawla C, Das P G. Partial integrated guidance and control of interceptors for high-speed ballistic targets. J Guid Control Dyn, 2014, 37: 149–163

    Article  Google Scholar 

  14. Panchal B, Mate N, Talole S E. Continuous-time predictive control-based integrated guidance and control. J Guid Control Dyn, 2017, 40: 1579–1595

    Article  Google Scholar 

  15. Chwa D, Choi J Y. Adaptive nonlinear guidance law considering control loop dynamics. IEEE Trans Aerosp Electron Syst, 2003, 39: 1134–1143

    Article  Google Scholar 

  16. Chwa D, Choi J Y, Anavatti S G. Observer-based adaptive guidance law considering target uncertainties and control loop dynamics. IEEE Trans Control Syst Technol, 2006, 14: 112–123

    Article  Google Scholar 

  17. Chen W H, Ballance D J, Gawthrop P J, et al. A nonlinear disturbance observer for robotic manipulators. IEEE Trans Ind Electron, 2000, 47: 932–938

    Article  Google Scholar 

  18. Chen M. Constrained control allocation for overactuated aircraft using a neurodynamic model. IEEE Trans Syst Man Cybern Syst, 2016, 46: 1630–1641

    Article  Google Scholar 

  19. Zhang C, Chen Z J, Wei C. Sliding mode disturbance observer-based backstepping control for a transport aircraft. Sci China Inf Sci, 2014, 57: 052202

    Article  MathSciNet  MATH  Google Scholar 

  20. Chen M, Ren B B, Wu Q X, et al. Anti-disturbance control of hypersonic flight vehicles with input saturation using disturbance observer. Sci China Inf Sci, 2015, 58: 070202

    Article  MathSciNet  Google Scholar 

  21. Chen M, Ge S S. Adaptive neural output feedback control of uncertain nonlinear systems with unknown hysteresis using disturbance observer. IEEE Trans Ind Electron, 2015, 62: 7706–7716

    Article  Google Scholar 

  22. Yong K N, Chen M, Wu Q X. Anti-disturbance control for nonlinear systems based on interval observer. IEEE Trans Ind Electron, 2020, 67: 1261–1269

    Article  Google Scholar 

  23. Zhu Y K, Guo L, Yu X, et al. An enhanced anti-disturbance control law for systems with multiple disturbances. Sci China Inf Sci, 2020, 63: 209206

    Article  MathSciNet  Google Scholar 

  24. Astolfi A, Ortega R. Immersion and invariance: a new tool for stabilization and adaptive control of nonlinear systems. IEEE Trans Autom Control, 2003, 48: 590–606

    Article  MathSciNet  MATH  Google Scholar 

  25. Karagiannis D, Carnevale D, Astolfi A. Invariant manifold based reduced-order observer design for nonlinear systems. IEEE Trans Autom Control, 2008, 53: 2602–2614

    Article  MathSciNet  MATH  Google Scholar 

  26. Liu Z, Tan X M, Yuan R Y, et al. Immersion and invariance-based output feedback control of air-breathing hypersonic vehicles. IEEE Trans Autom Sci Eng, 2016, 13: 394–402

    Article  Google Scholar 

  27. Astolfi A, Ortega R, Venkatraman A. A globally exponentially convergent immersion and invariance speed observer for mechanical systems with non-holonomic constraints. Automatica, 2010, 46: 182–189

    Article  MathSciNet  MATH  Google Scholar 

  28. Bechlioulis C P, Rovithakis G A. Robust adaptive control of feedback linearizable MIMO nonlinear systems with prescribed performance. IEEE Trans Autom Control, 2008, 53: 2090–2099

    Article  MathSciNet  MATH  Google Scholar 

  29. Bechlioulis C P, Karras G C, Heshmati-Alamdari S, et al. Trajectory tracking with prescribed performance for underactuated underwater vehicles under model uncertainties and external disturbances. IEEE Trans Control Syst Technol, 2017, 25: 429–440

    Article  Google Scholar 

  30. Hu Q L, Shao X D, Guo L. Adaptive fault-tolerant attitude tracking control of spacecraft with prescribed performance. IEEE/ASME Trans Mechatron, 2018, 23: 331–341

    Article  Google Scholar 

  31. Yong K N, Chen M, Shi Y, et al. Flexible performance-based robust control for a class of nonlinear systems with input saturation. Automatica, 2020, 122: 109268

    Article  MathSciNet  MATH  Google Scholar 

  32. An H, Xia H W, Wang C H. Barrier Lyapunov function-based adaptive control for hypersonic flight vehicles. Nonlinear Dyn, 2017, 88: 1833–1853

    Article  MathSciNet  MATH  Google Scholar 

  33. Liu W K, Wei Y Y, Duan G R. Barrier Lyapunov function-based integrated guidance and control with input saturation and state constraints. Aerospace Sci Tech, 2019, 84: 845–855

    Article  Google Scholar 

  34. Shin H S, Tsourdos A, Li K B. A new three-dimensional sliding mode guidance law variation with finite time convergence. IEEE Trans Aerosp Electron Syst, 2017, 53: 2221–2232

    Article  Google Scholar 

  35. Beard R W, Ferrin J, Humpherys J. Fixed wing UAV path following in wind with input constraints. IEEE Trans Contr Syst Technol, 2014, 22: 2103–2117

    Article  Google Scholar 

  36. Yong K N, Chen M, Shi Y, et al. Hybrid estimation strategy-based anti-disturbance control for nonlinear systems. IEEE Trans Autom Control, 2021, 66: 4910–4917

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Science Fund (Grant No. 61825302, 62103188), in part by Key R&D Projects (Social Development) in Jiangsu Province of China (Grant No. BE2020704), and in part by Jiangsu Province “333” Project (Grant No. BRA2019051).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mou Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yong, K., Chen, M. & Wu, Q. Noncertainty-equivalent observer-based noncooperative target tracking control for unmanned aerial vehicles. Sci. China Inf. Sci. 65, 152202 (2022). https://doi.org/10.1007/s11432-020-3205-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11432-020-3205-4

Keywords

Navigation