Skip to main content
Log in

Spin logic operations based on magnetization switching by asymmetric spin current

  • Research Paper
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

Spintronic devices based on spin orbit torques (SOT) exhibit advantages in low power consumption, high speed, reconfigurability, and high endurance, which offers the prospect of in-memory computing based on spin logic devices. By designing a local spin current gradient, the magnetization can be switched deterministically by asymmetric spin currents without external magnetic field using micromagnetic simulations, where an additional out of plane effective field can be generated by the spin gradient. Through capping half of the Pt/Co/Pt SOT devices with Pt strip, we demonstrate the field-free deterministic current-induced magnetization switching experimentally. Finally, we design AND, NAND, OR, and NOR Boolean logic gates based on these devices, which could be used as building blocks for programmable and stateful logic operations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Li Y, Edmonds K W, Liu X, et al. Manipulation of magnetization by spin-orbit torque. Adv Quantum Technol, 2019, 2: 1800052

    Article  Google Scholar 

  2. Khvalkovskiy A V, Apalkov D, Watts S, et al. Basic principles of STT-MRAM cell operation in memory arrays. J Phys D-Appl Phys, 2013, 46: 074001

    Article  Google Scholar 

  3. Aggarwal S, Almasi H, DeHerrera M, et al. Demonstration of a reliable 1 Gb standalone spin-transfer torque MRAM for industrial applications. In: Proceedings of IEEE International Electron Devices Meeting (IEDM), 2019. 1–4

  4. Slonczewski J C. Current-driven excitation of magnetic multilayers. J Magn Magn Mater, 1996, 159: 1–7

    Article  Google Scholar 

  5. Berger L. Emission of spin waves by a magnetic multilayer traversed by a current. Phys Rev B, 1996, 54: 9353–9358

    Article  Google Scholar 

  6. Bhatti S, Sbiaa R, Hirohata A, et al. Spintronics based random access memory: a review. Mater Today, 2017, 20: 530–548

    Article  Google Scholar 

  7. Jabeur K, Di Pendina G, Bernard-Granger F, et al. Spin orbit torque non-volatile flip-flop for high speed and low energy applications. IEEE Electron Device Lett, 2014, 35: 408–410

    Article  Google Scholar 

  8. Prenat G, Jabeur K, Vanhauwaert P, et al. Ultra-fast and high-reliability SOT-MRAM: from cache replacement to normally-off computing. IEEE Trans Multi-Scale Comp Syst, 2016, 2: 49–60

    Article  Google Scholar 

  9. Zhang N, Zhang B, Yang M-Y, et al. Progress of electrical control magnetization reversal and domain wall motion (in Chinese). Acta Phys Sin, 2017, 66: 027501

    Article  Google Scholar 

  10. Miron I M, Gaudin G, Auffret S, et al. Current-driven spin torque induced by the Rashba effect in a ferromagnetic metal layer. Nat Mater, 2010, 9: 230–234

    Article  Google Scholar 

  11. Miron I M, Garello K, Gaudin G, et al. Perpendicular switching of a single ferromagnetic layer induced by in-plane current injection. Nature, 2011, 476: 189–193

    Article  Google Scholar 

  12. Liu L, Pai C F, Li Y, et al. Spin-torque switching with the giant spin Hall effect of tantalum. Science, 2012, 336: 555–558

    Article  Google Scholar 

  13. Liu L, Lee O J, Gudmundsen T J, et al. Current-induced switching of perpendicularly magnetized magnetic layers using spin torque from the spin Hall effect. Phys Rev Lett, 2012, 109: 096602

    Article  Google Scholar 

  14. Parveen F, Angizi S, He Z, et al. Low power in-memory computing based on dual-mode SOT-MRAM. In: Proceedings of IEEE/ACM International Symposium on Low Power Electronics and Design (ISLPED), 2017. 1–6

  15. Baek S C, Park K W, Kil D S, et al. Complementary logic operation based on electric-field controlled spin-orbit torques. Nat Electron, 2018, 1: 398–403

    Article  Google Scholar 

  16. Wang X, Wan C, Kong W, et al. Field-free programmable spin logics via chirality-reversible spin-orbit torque switching. Adv Mater, 2018, 30: 1801318

    Article  Google Scholar 

  17. Yang M, Cai K, Ju H, et al. Spin-orbit torque in Pt/CoNiCo/Pt symmetric devices. Sci Rep, 2016, 6: 20778

    Article  Google Scholar 

  18. Cai K, Yang M, Ju H, et al. Electric field control of deterministic current-induced magnetization switching in a hybrid ferromagnetic/ferroelectric structure. Nat Mater, 2017, 16: 712–716

    Article  Google Scholar 

  19. Yu G, Upadhyaya P, Fan Y, et al. Switching of perpendicular magnetization by spin-orbit torques in the absence of external magnetic fields. Nat Nanotech, 2014, 9: 548–554

    Article  Google Scholar 

  20. Sheng Y, Edmonds K W, Ma X, et al. Adjustable current-induced magnetization switching utilizing interlayer exchange coupling. Adv Electron Mater, 2018, 4: 1800224

    Article  Google Scholar 

  21. Cao Y, Sheng Y, Edmonds K W, et al. Deterministic magnetization switching using lateral spin-orbit torque. Adv Mater, 2020, 32: 1907929

    Article  Google Scholar 

  22. Ganguly A, Kondou K, Sukegawa H, et al. Thickness dependence of spin torque ferromagnetic resonance in Co75Fe25/Pt bilayer films. Appl Phys Lett, 2014, 104: 072405

    Article  Google Scholar 

  23. Li S H, Lim G J, Gan W L, et al. Tuning the spin-orbit torque effective fields by varying Pt insertion layer thickness in perpendicularly magnetized Pt/Co/Pt(t)/Ta structures. J Magn Magn Mater, 2019, 473: 394–398

    Article  Google Scholar 

  24. Vansteenkiste A, Leliaert J, Dvornik M, et al. The design and verification of MuMax3. AIP Adv, 2014, 4: 107133

    Article  Google Scholar 

  25. Chen B J, Lourembam J, Goolaup S, et al. Field-free spin-orbit torque switching of a perpendicular ferromagnet with Dzyaloshinskii-Moriya interaction. Appl Phys Lett, 2019, 114: 022401

    Article  Google Scholar 

  26. Yan S, Bazaliy Y B. Phase diagram and optimal switching induced by spin Hall effect in a perpendicular magnetic layer. Phys Rev B, 2015, 91: 214424

    Article  Google Scholar 

  27. Karplus R, Luttinger J M. Hall effect in ferromagnetics. Phys Rev, 1954, 95: 1154–1160

    Article  MATH  Google Scholar 

  28. Sinova J, Valenzuela S O, Wunderlich J, et al. Spin Hall effects. Rev Mod Phys, 2015, 87: 1213–1260

    Article  Google Scholar 

  29. Li Y, Liang J, Yang H, et al. Current-induced out-of-plane effective magnetic field in antiferromagnet/heavy metal/ferromagnet/heavy metal multilayer. Appl Phys Lett, 2020, 117: 092404

    Article  Google Scholar 

  30. Lee J M, Cai K, Yang G, et al. Field-free spin-orbit torque switching from geometrical domain-wall pinning. Nano Lett, 2018, 18: 4669–4674

    Article  Google Scholar 

  31. Zhang N, Cao Y, Li Y, et al. Complementary lateral-spin-orbit building blocks for programmable logic and in-memory computing. Adv Electron Mater, 2020, 6: 2000296

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Beijing Natural Science Foundation Key Program (Grant No. Z190007), National Natural Science Foundation of China (Grant Nos. 61774144, 12004376), Key Research Program of Frontier Sciences, CAS (Grant No. QYZDY-SSW-JSC020), and the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant Nos. XDB28000000, XDB44000000).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kaiyou Wang.

Additional information

Supporting information

Appendixes A and B. The supporting information is available online at info.scichina.com and link.springer.com. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Supplementary File

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Zhang, N. & Wang, K. Spin logic operations based on magnetization switching by asymmetric spin current. Sci. China Inf. Sci. 65, 122404 (2022). https://doi.org/10.1007/s11432-020-3246-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11432-020-3246-8

Keywords

Navigation