Skip to main content
Log in

Key issues and algorithms of multiple-input-multiple-output over-the-air testing in the multi-probe anechoic chamber setup

  • Review
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

Multiple-input-multiple-output (MIMO) over-the-air (OTA) testing plays a key role in the research and development of wireless devices. MIMO OTA testing is necessary for the fifth generation (5G) wireless products, in which conventional radio frequency ports may be inaccessible. The performances of the test device can be evaluated in a repeatable and reliable way under laboratory conditions in OTA tests, which might not be feasible in conducted tests. Many efforts have been devoted to OTA test research and some achievements have been made. This paper mainly summarizes the channel emulation algorithms for two-dimensional user equipment and three-dimensional base station OTA testing in the anechoic chamber setup. In addition, the requirements of the test system design are also discussed in this paper, including the selection of the number of OTA probes, the size of the test zone, the physical dimension of the setup, and the flexible probe selection algorithm of the three-dimensional base station OTA setup. In addition, some novel test methods for 5G radio devices are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. You X H, Wang C X, Huang J, et al. Towards 6G wireless communication networks: vision, enabling technologies, and new paradigm shifts. Sci China Inf Sci, 2021, 64: 110301

    Article  Google Scholar 

  2. Yuan Y F, Zhao Y J, Zong B Q, et al. Potential key technologies for 6G mobile communications. Sci China Inf Sci, 2020, 63: 183301

    Article  Google Scholar 

  3. He R, Ai B, Wang G, et al. Wireless channel sparsity: measurement, analysis, and exploitation in estimation. IEEE Wirel Commun, 2021. doi: https://doi.org/10.1109/MWC.001.2000378

  4. 3GPP. User equipment (UE)/mobile station (MS) over the air (OTA) antenna performance; conformance testing (release 9). 3GPP TS 34.114, 2009. http://www.arib.or.jp/english/html/overview/doc/STD-T63v9_20/2_T63/ARIB-STD-T63/Rel9/34/A34114-920.pdf

  5. CTIA Certifification. Test plan for mobile station over the air performance. Method of measurement for radiated RF power and receiver performance. Revision Number 2.2.2, 2008. https://api.ctia.org/docs/default-source/default-document-library/ctia-test-plan-for-mobile-station-over-the-air-performance-revision-3-1.pdf

  6. Obayashi S, Ohishi T, Karasawa Y. Effect of vertical angle spread of propagation channel on MIMO OTA measurement method. In: Proceedings of Asia-Pacific Microwave Conference, Yokohama, 2010. 1934–1937

  7. Rumney M, Pirkl R, Landmann M H, et al. MIMO over-the-air research, development, and testing. Int J Antenn Propag, 2012, 2012: 1–8

    Article  Google Scholar 

  8. Jing Y, Zhao X, Kong H W, et al. Two-stage over-the-air (OTA) test method for LTE MIMO device performance evaluation. Int J Antenn Propag, 2012, 2012: 1–6

    Article  Google Scholar 

  9. Kyösti P, Jämsä T, Nuutinen J P. Channel modelling for multiprobe over-the-air MIMO testing. Int J Antenn Propag, 2012, 2012: 1–11

    Article  Google Scholar 

  10. Arsalane N, Mouhamadou M, Decroze C, et al. 3GPP channel model emulation with analysis of MIMO-LTE performances in reverberation chamber. Int J Antenn Propag, 2012, 2012: 1–8

    Article  Google Scholar 

  11. Kildal P S, Rosengren K. Correlation and capacity of MIMO systems and mutual coupling, radiation efficiency, and diversity gain of their antennas: simulations and measurements in a reverberation chamber. IEEE Commun Mag, 2004, 42: 104–112

    Article  Google Scholar 

  12. Chen X M, Xue W, Shi H, et al. Orbital angular momentum multiplexing in highly reverberant environments. IEEE Microw Wirel Compon Lett, 2020, 30: 112–115

    Article  Google Scholar 

  13. Chen X M. Throughput modeling and measurement in an isotropic-scattering reverberation chamber. IEEE Trans Antenn Propag, 2014, 62: 2130–2139

    Article  Google Scholar 

  14. Yu W, Qi Y H, Liu K F, et al. Radiated two-stage method for LTE MIMO user equipment performance evaluation. IEEE Trans Electromagn Compat, 2014, 56: 1691–1696

    Article  Google Scholar 

  15. Fan W, Kyosti P, Hentila L, et al. MIMO terminal performance evaluation with a novel wireless cable method. IEEE Trans Antenn Propag, 2017, 65: 4803–4814

    Article  Google Scholar 

  16. Toivanen J T, Laitinen T A, Kolmonen V M, et al. Reproduction of arbitrary multipath environments in laboratory conditions. IEEE Trans Instrum Meas, 2011, 60: 275–281

    Article  Google Scholar 

  17. Sharma R K, Kotterman W, Landmann M H, et al. Over-the-air testing of cognitive radio nodes in a virtual electromagnetic environment. Int J Antenn Propag, 2013, 2013: 1–16

    Article  Google Scholar 

  18. Khatun A, Kolmonen V M, Hovinen V, et al. Experimental verification of a plane-wave field synthesis technique for MIMO OTA antenna testing. IEEE Trans Antenn Propag, 2016, 64: 3141–3150

    Article  Google Scholar 

  19. Llorente I C, Fan W, Nielsen J O, et al. Comparison of channel emulation techniques in multiprobe anechoic chamber setups. In: Proceedings of the 9th European Conference on Antennas and Propagation (EuCAP), Lisbon, 2015

  20. Fan W, Carreno X, Kyosti P, et al. Over-the-air testing of MIMO-capable terminals: evaluation of multiple-antenna systems in realistic multipath propagation environments using an OTA method. IEEE Veh Technol Mag, 2015, 10: 38–46

    Article  Google Scholar 

  21. Mow M A, Niu B L, Schlub R W, et al. Tools for design and analysis of over-the-air test systems with channel model emulation capabilities. US Patent, 20 110 270 567, 2011

  22. Kyösti P, Nuutinen J. Over the air test. US Patent, 20 110 189962, 2011

  23. Reed J D. Emulation and controlled testing of MIMO OTA channels. US Patent 20 110 299 570, 2011

  24. Fan W, Nielsen J Ø, Franek O, et al. Antenna pattern impact on MIMO OTA testing. IEEE Trans Antenn Propag, 2013, 61: 5714–5723

    Article  Google Scholar 

  25. Almers P, Bonek E, Burr A, et al. Survey of channel and radio propagation models for wireless MIMO systems. Eurasip J Wirel Commun Netw, 2007, 2007: 019070

    Article  Google Scholar 

  26. Baum D S, Hansen J, Salo J, et al. An interim channel model for beyond-3G systems: extending the 3GPP spatial channel model (SCM). In: Proceedings of the 61st Vehicular Technology Conference, Stockholm, 2005. 3132–3136

  27. Kyösti P, Meinilö J, Hentilö L, et al. IST-4-027756 WINNER II D1.1.2 V1.0 WINNER II Channel Models. IST-WINNER II Technical Report. 2007

  28. 3GPP. Study on cannel model for frequencies from 0.5 to 100 GHz. 3GPP TR 38.901, 2017

  29. Wu X F, Wang N, Zhang Z H, et al. Comparison tests and hand phantom standardization for multi-probe based MIMO OTA. In: Proceedings of the 5th Asia-Pacific Conference on Antennas and Propagation (APCAP), Taiwan, 2016. 321–322

  30. Carreño X, Fan W, Nielsen J O, et al. Test setup for anechoic room based MIMO OTA testing of LTE terminals. In: Proceedings of the 7th European Conference on Antennas and Propagation (EuCAP), Gothenburg, 2013. 1417–1420

  31. CTIA Certifification. Test plan for 2×2 downlink MIMO and transmit diversity over-the air performance. Technical Report Version 1.1, 2016

  32. Kyosti P, Hentila L, Fan W, et al. On radiated performance evaluation of massive MIMO devices in multiprobe anechoic chamber OTA setups. IEEE Trans Antenn Propag, 2018, 66: 5485–5497

    Article  Google Scholar 

  33. Kyosti P, Khatun A. Probe configurations for 3-D MIMO over-the-air testing. In: Proceedings of the 7th European Conference on Antennas and Propagation (EuCAP), Gothenburg, 2013. 1421–1425

  34. Weimin W M, Li M Y, Liu Y A, et al. Novel physical probe configurations in a multi-probe based 3D MIMO OTA setup. J China Univ Post TeleCommun, 2017, 24: 60–66

    Article  Google Scholar 

  35. Wang R R, Wang W M, Wu Y G, et al. 3D channel spatial characteristic emulation in multi-probe anechoic chamber setups. In: Proceedings of Global Wireless Summit (GWS), Chiang Rai, 2018. 348–353

  36. Yuan Y, Wang W M, Liu Y N, et al. Impact of probe ring location on test area performance in 3D MIMO OTA setup. In: Proceedings of the 11th International Symposium on Antennas, Propagation and EM Theory (ISAPE), Guilin, 2016. 858–861

  37. Zhang Z, Tian L, Zhang J H, et al. Analysis of test volume size in 3D MIMO OTA for 5G. In: Proceedings of IEEE International Conference on Communications Workshops (ICC Workshops), Shanghai, 2019

  38. Fan W, Sun F, Nielsen J Ø, et al. Probe selection in multiprobe OTA setups. IEEE Trans Antenn Propag, 2014, 62: 2109–2120

    Article  Google Scholar 

  39. Yang X L, Zhang P, Chen J Q, et al. Probe subset selection in 3D multiprobe OTA setup. In: Proceedings of the 29th Annual International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC), Bologna, 2018

  40. Fan W, Szini I, Nielsen J Ø, et al. Channel spatial correlation reconstruction in flexible multiprobe setups. Antenn Wirel Propag Lett, 2013, 12: 1724–1727

    Article  Google Scholar 

  41. Gao H Q, Wang W M, Wu Y L, et al. 3D flexible multi-probe setups for MIMO OTA testing. In: Proceedings of the 5th International Symposium on Electromagnetic Compatibility, Beijing, 2017

  42. Wang W M, Wang R R, Gao H Q, et al. Implementation and analysis of 3D channel emulation method in multi-probe anechoic chamber setups. IEEE Access, 2019, 7: 108571

    Article  Google Scholar 

  43. Fan W, Kyösti P, Nuutinen J P, et al. On probe weighting for MIMO OTA testing in anechoic chamber setups. In: Proceedings of Asia-Pacific Microwave Conference (APMC), Nanjing, 2015

  44. Belhabib M, D’Errico R, Bernard U. Effect of finite ring radius and antenna radiation on spatial correlation in multiprobe over-the-air tests. In: Proceedings of the 10th European Conference on Antennas and Propagation (EuCAP), Davos, 2016

  45. Belhabib M, D’Errico R, Uguen B. Spatial correlation in spherical and cylindrical 3D MIMO over-the-air tests setups. In: Proceedings of the 10th European Conference on Antennas and Propagation (EuCAP), Davos, 2016

  46. Fan W, Szini I, Foegelle M D, et al. Measurement uncertainty investigation in the multi-probe OTA setups. In: Proceedings of the 8th European Conference on Antennas and Propagation (EuCAP), Hague, 2014. 1068–1072

  47. Foged L J, Scannavini A, Gross N, et al. MIMO OTA testing using a multiprobe system approach. In: Proceedings of the 7th European Conference on Antennas and Propagation (EuCAP), Gothenburg, 2013. 1673–1677

  48. Guo L, Sun C, An X D, et al. Over the air MIMO channel model validation. In: Proceedings of the 7th European Conference on Antennas and Propagation (EuCAP), Gothenburg, 2013. 1848–1852

  49. Fan W, Nielsen J Ø, Carreño X, et al. Impact of system non-idealities on spatial correlation emulation in a multi-probe based MIMO OTA setup. In: Proceedings of the 7th European Conference on Antennas and Propagation (EuCAP), Gothenburg, 2013. 1663–1667

  50. Fan W, Nielsen J Ø, Carreño X, et al. Impact of probe placement error on MIMO OTA test zone performance. In: Proceedings of Loughborough Antennas and Propagation Conference (LAPC), Loughborough, 2012

  51. Reed D. Experiments with spatial correlation for evaluating OTA techniques TD (09)856. COST2100, 2009. 1–4

  52. Fan W, de Lisbona X C B, Sun F, et al. Emulating spatial characteristics of MIMO channels for OTA testing. IEEE Trans Antenn Propag, 2013, 61: 4306–4314

    Article  MathSciNet  MATH  Google Scholar 

  53. Boyd S, Vandenberghe L. Convex Optimization. Cambridge: Cambridge University Press, 2004

    Book  MATH  Google Scholar 

  54. Llorente I C, Fan W, Pedersen G F. MIMO OTA testing in small multiprobe anechoic chamber setups. Antenn Wirel Propag Lett, 2016, 15: 1167–1170

    Article  Google Scholar 

  55. Parveg D, Laitinen T, Khatun A, et al. Calibration procedure for 2-D MIMO over-the-air multi-probe test system. In: Proceedings of the 6th European Conference on Antennas and Propagation (EUCAP), Prague, 2012. 1594–1598

  56. Kotterman W A T, Heuberger A, Thomä R S. On the accuracy of synthesised wave-fields in MIMO-OTA setups. In: Proceedings of the 5th European Conference on Antennas and Propagation (EUCAP), Rome, 2011. 2560–2564

  57. Laitinen T A, Kyösti P, Nuutinen J-P, et al. On the number of OTA antenna elements for plane-wave synthesis in a MIMO OTA test system involving a circular antenna array. In: Proceedings of the 4th European Conference on Antennas and Propagation (EUCAP), Barcelona, 2010

  58. Schirmer C, Landmann M H, Kotterman W A T, et al. 3D wave-field synthesis for testing of radio devices. In: Proceedings of the 8th European Conference on Antennas and Propagation (EuCAP), Hague, 2014. 3394–3398

  59. Fan W, Kyosti P, Hentila L, et al. Rician channel modeling for multiprobe anechoic chamber setups. Antenn Wirel Propag Lett, 2014, 13: 1761–1764

    Article  Google Scholar 

  60. Ji Y L, Fan W, Pedersen G F, et al. On channel emulation methods in multiprobe anechoic chamber setups for over-the-air testing. IEEE Trans Veh Technol, 2018, 67: 6740–6751

    Article  Google Scholar 

  61. Giacaglia G E O. Trigonometric Interpolation. Celestial Mech, 1970, 1: 360–367

    Article  MathSciNet  MATH  Google Scholar 

  62. Fan W, Hentila L, Kyosti P, et al. Test zone size characterization with measured MIMO throughput for simulated MPAC configurations in conductive setups. IEEE Trans Veh Technol, 2017, 66: 10532–10536

    Article  Google Scholar 

  63. Fan W, Kyosti P, Nielsen J Ø, et al. Wideband MIMO channel capacity analysis in multiprobe anechoic chamber setups. IEEE Trans Veh Technol, 2016, 65: 2861–2871

    Article  Google Scholar 

  64. Jungnickel V, Jaeckel S, Thiele L, et al. Capacity measurements in a cooperative MIMO network. IEEE Trans Veh Technol, 2009, 58: 2392–2405

    Article  Google Scholar 

  65. Laitinen T, Toivanen J, Kyösti P, et al. On a MIMO-OTA testing based on multi-probe technology. In: Proceedings of URSI International Symposium on Electromagnetic Theory, Berlin, 2010. 227–230

  66. Kyösti P, Nuutinen J, Jämsä T. Simulated correlation accuracy of MIMO OTA spatial fading emulator. In: Proceedings of the 11th MCM COST-2100, Alborg, 2010

  67. Imai T, Okano Y, Koshiro K, et al. Theoretical analysis of adequate number of probe antennas in spatial channel emulator for MIMO performance evaluation of mobile terminals. In: Proceedings of the 4th European Conference on Antennas and Propagation (EuCAP), Barcelona, 2010

  68. Panasonic and Tokyo Institute of Technology. Procedure of the determining the dimension of a spatial fading emulator. In: Proceedings of 3GPP TSG RAN4 Meeting, Jeju, 2009

  69. Laitinen T, Kyösti P, Jämsä T, et al. Generation of a field with a laplacian-distributed power azimuth spectrum scattered by a single cluster in a MIMO-OTA test system based on multiple probe antennas. In: Proceedings of Asia-Pacific Microwave Conference, Yokohama, 2010. 2127–2130

  70. Khatun A, Laitinen T, Kolmonen V M, et al. Dependence of error level on the number of probes in over-the-air multiprobe test systems. Int J Antenn Propag, 2012, 2012: 1–6

    Article  Google Scholar 

  71. Khatun A, Kolmonen V M, Laitinen T, et al. Clarification of uncertainties in MIMO over-the-air multi-probe test systems. In: Proceedings of the 7th European Conference on Antennas and Propagation (EuCAP), Gothenburg, 2013. 1427–1431

  72. Scannavini A, FogedL J, Gross N, et al. Test zone characterization for the multiprobe anechoic chamber setup (MPAC). In: Proceedings of the 10th European Conference on Antennas and Propagation (EuCAP), Davos, 2016

  73. Fan W, Kyosti P, Ji Y L, et al. Experimental evaluation of user influence on test zone size in multi-probe anechoic chamber setups. IEEE Access, 2017, 5: 18545–18556

    Article  Google Scholar 

  74. Yamamoto A. Procedure of designing the structural parameters of a spatial fading emulator with a Laplacian angular power spectrum of incoming wave. In: Proceedings of COST 2100 TD(10)10016, Athens, 2010

  75. Kyösti P, Hentilä L. Criteria for physical dimensions of MIMO OTA multi-probe test setup. In: Proceedings of the 6th European Conference on Antennas and Propagation (EUCAP), Prague, 2012. 2055–2059

  76. Wang W M, Wang H, Gao H Q, et al. Plane wave compensation technique for multiple-input multiple-output over-the-air testing in small multi-probe anechoic chamber. IET Microwave Antenn Propag, 2019, 13: 2625–2631

    Article  Google Scholar 

  77. Fan W, Pedersen G F, Kyösti P, et al. Recent advances on OTA testing for 5G antenna systems in multi-probe anechoic chamber setups. In: Proceedings of the 6th Asia-Pacific Conference on Antennas and Propagation (APCAP), Xi’an, 2017

  78. Reed D, Borsato R, Rodriguez-Herrera A. Evaluation of devices with adaptive antennas using over the air techniques. In: Proceedings of the 10th European Conference on Antennas and Propagation (EUCAP), Davos, 2016

  79. Fan W, Kyosti P, Rumney M, et al. Over-the-air radiated testing of millimeter-wave beam-steerable devices in a cost-effective measurement setup. IEEE Commun Mag, 2018, 56: 64–71

    Article  Google Scholar 

  80. Fan W, Zhang F C, Jämsä T, et al. Reproducing standard SCME channel models for massive MIMO base station radiated testing. In: Proceedings of the 11th European Conference on Antennas and Propagation (EUCAP), Paris, 2017. 3658–3662

  81. Fan W, Carton I, Kyosti P, et al. A step toward 5G in 2020: low-cost OTA performance evaluation of massive MIMO base stations. IEEE Antenn Propag Mag, 2017, 59: 38–47

    Article  Google Scholar 

  82. Fan W, Zhang F C, Wang Z P. Over-the-air testing of 5G communication systems: validation of the test environment in simple-sectored multiprobe anechoic chamber setups. IEEE Antenn Propag Mag, 2021, 63: 40–50

    Article  Google Scholar 

  83. Wang H, Wang W M, Wu Y, et al. Probe selection for 5G massive MIMO base station over-the-air testing. Antenn Wirel Propag Lett, 2020, 19: 1998–2002

    Article  Google Scholar 

  84. Qiao Z L, Xie Y J, Wang Z P, et al. Exploring OTA testing for massive MIMO base stations in small region. In: Proceedings of the 6th Asia-Pacific Conference on Antennas and Propagation (APCAP), Xi’an, 2017

  85. Li Y L, Xin L J, Zhang X. On probe weighting for massive MIMO OTA testing based on angular spectrum similarity. Antenn Wirel Propag Lett, 2019, 18: 1497–1501

    Article  Google Scholar 

  86. Pei H L, Chen X M, Fan W, et al. Comparisons of channel emulation methods for state-of-the-art multi-probe anechoic chamber based millimeter-wave over-the-air testing. In: Proceedings of the 90th Vehicular Technology Conference (VTC2019-Fall), Honolulu, 2019

  87. Kotterman W A T, Schirmer C, Landmann M H, et al. New challenges in over-the-air testing. In: Proceedings of the 11th European Conference on Antennas and Propagation (EUCAP), Paris, 2017. 3676–3678

  88. Khatun A, Haneda K, Heino M, et al. Feasibility of multi-probe over-the-air antenna test methods for frequencies above 6 GHz. In: Proceedings of Loughborough Antennas and Propagation Conference (LAPC), Loughborough, 2015

  89. Hekkala A, Kyösti P, Kyröläinen J, et al. Performance evaluation of sectored MPAC for 5G UE antenna systems. In: Proceedings of the 6th Asia-Pacific Conference on Antennas and Propagation (APCAP), Xi’an, 2017

  90. Gao H Q, Wang W M, Fan W, et al. Beam probability metric for 5G OTA testing in multi-probe anechoic chamber setups. In: Proceedings of IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting, Atlanta, 2019. 1847–1848

  91. Zhang F C, Fan W, Ji Y L, et al. Performance testing of massive MIMO base station with multi-probe anechoic chamber setups. In: Proceedings of the 12th European Conference on Antennas and Propagation (EuCAP), London, 2018

  92. Gao H Q, Wang W M, Fan W, et al. Beam probability metric for OTA testing of adaptive antenna systems in multi-probe anechoic chamber setups. In: Proceedings of the 13th European Conference on Antennas and Propagation (EuCAP), Krakow, 2019

  93. Kyösti P, Hentilä, Kyröläinen, et al. Emulating dynamic radio channels for radiated testing of massive MIMO devices. In: Proceedings of the 12th European Conference on Antennas and Propagation (EuCAP), London, 2018

  94. Pei H L, Chen X M, Zhang M, et al. Over-the-air testing of 5G millimeter-wave system with adaptive beamforming. In: Proceedings of IEEE MTT-S International Wireless Symposium (IWS), Guangzhou, 2019

  95. Zhang X, Qiao S B, Peng M G, et al. Probe selection for over-the-air test in 5G base stations with massive multiple-input multiple-output. China Commun, 2019, 16: 1–12

    Google Scholar 

  96. Wang H, Wang C Q, Wang W M, et al. Flexible OTA probe setups for massive MIMO base station testing. In: Proceedings of Asia-Pacific Microwave Conference (APMC), Kyoto, 2018. 908–910

  97. Kyosti P, Fan W, Pedersen G F, et al. On dimensions of OTA setups for massive MIMO base stations radiated testing. IEEE Access, 2016, 4: 5971–5981

    Article  Google Scholar 

  98. Kyösti P, Fan W, Kyröläinen J. Assessing measurement distances for OTA testing of massive MIMO base station at 28 GHz. In: Proceedings of the 11th European Conference on Antennas and Propagation (EUCAP), Paris, 2017. 3679–3683

  99. Gao H Q, Wang W M, Wu Y L, et al. A virtual over-the-air method for 5G massive MIMO base station testing with flexible virtual probes. IEEE Access, 2019, 7: 108474

    Article  Google Scholar 

  100. Reyes D, Beach M, Mellios E, et al. Over-the-air test method for 5G mmWave devices with beamforming capabilities. In: Proceedings of IEEE Globecom Workshops (GC Wkshps), Abu Dhabi, 2018

Download references

Acknowledgements

This work was supported in part by National Key Research and Development Program of China (Grant No. 2020YFA0709800), National Natural Science Foundation of China (Grant Nos. 62171362, 61801366, 81701774, 61771423), Natural Science Foundation of Shaanxi Province (Grant No. 2020JM-078), National Key Research and Development Program of China (Grant No. 2018YFA0701400), Zhejiang Lab (Grant No. 2018EB0ZX01), Key-Area Research and Development Program of Guangdong Province (Grant No. 2018B030333001), and Fundamental Research Funds for the Central Universities (Grant No. 2019XZZX003-20).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoming Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pei, H., Chen, X., Huang, X. et al. Key issues and algorithms of multiple-input-multiple-output over-the-air testing in the multi-probe anechoic chamber setup. Sci. China Inf. Sci. 65, 131302 (2022). https://doi.org/10.1007/s11432-021-3285-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11432-021-3285-y

Keywords

Navigation