Skip to main content
Log in

IGZO-based neuromorphic transistors with temperature-dependent synaptic plasticity and spiking logics

  • Research Paper
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

Temperature is one of the vital influential factors for all physiological and mental activities. Studying the influence of temperature on the properties of synaptic devices is of great importance for neuromorphic computing and bionic perception. Here, indium-gallium-zinc-oxide (IGZO) based electrical-double-layer neuromorphic transistors were proposed for the emulation of temperature-dependent synaptic functions. The influence of temperature on the synaptic plasticity, including excitatory postsynaptic current, paired-pulse facilitation, and dynamic filtering was investigated. Interestingly, temperature induced spiking AND to OR logic switching was demonstrated in an IGZO-based neuromorphic transistor with two in-plane gate electrodes. Our results provided an insight into the temperature-induced synaptic functions and spiking logic switching, which is interesting for neuromorphic systems with biological fidelity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Asztely F, Erdemli G, Kullmann D M. Extrasynaptic glutamate spillover in the hippocampus: dependence on temperature and the role of active glutamate uptake. Neuron, 1997, 18: 281–293

    Article  Google Scholar 

  2. Li X, Zhou W, Yao S, et al. Effects of temperature on the activity of cultured hippocampal neuronal networks. Acta Biophys Sin, 2004, 20: 477–482

    Google Scholar 

  3. Karlsson K, Blumberg M S. Temperature-induced reciprocal activation of hippocampal field activity. J Neurophysiol, 2004, 91: 583–588

    Article  Google Scholar 

  4. Micheva K D, Smith S J. Strong effects of subphysiological temperature on the function and plasticity of mammalian presynaptic terminals. J Neurosci, 2005, 25: 7481–7488

    Article  Google Scholar 

  5. Zucker R S, Regehr W G. Short-term synaptic plasticity. Annu Rev Physiol, 2002, 64: 355–405

    Article  Google Scholar 

  6. Ho V M, Lee J A, Martin K C. The cell biology of synaptic plasticity. Science, 2011, 334: 623–628

    Article  Google Scholar 

  7. Voglis G, Tavernarakis N. The role of synaptic ion channels in synaptic plasticity. EMBO Rep, 2006, 7: 1104–1110

    Article  Google Scholar 

  8. Thompson S, Masukawa L, Prince D. Temperature dependence of intrinsic membrane properties and synaptic potentials in hippocampal CA1 neurons in vitro. J Neurosci, 1985, 5: 817–824

    Article  Google Scholar 

  9. Weight F F, Erulkar S D. Synaptic transmission and effects of temperature at the squid giant synapse. Nature, 1976, 261: 720–722

    Article  Google Scholar 

  10. Postlethwaite M, Hennig M H, Steinert J R, et al. Acceleration of AMPA receptor kinetics underlies temperature-dependent changes in synaptic strength at the rat calyx of Held. J Physiol, 2007, 579: 69–84

    Article  Google Scholar 

  11. Mahanty A, Purohit G K, Banerjee S, et al. Proteomic changes in the liver of Channa striatus in response to high temperature stress. Electrophoresis, 2016, 37: 1704–1717

    Article  Google Scholar 

  12. Duan Q, Jing Z, Zou X, et al. Spiking neurons with spatiotemporal dynamics and gain modulation for monolithically integrated memristive neural networks. Nat Commun, 2020, 11: 3399

    Article  Google Scholar 

  13. Yang J Q, Wang R P, Ren Y, et al. Neuromorphic engineering: from biological to spike-based hardware nervous systems. Adv Mater, 2020, 32: 2003610

    Article  Google Scholar 

  14. Chen L, Wang L, Peng Y, et al. A van der Waals synaptic transistor based on ferroelectric Hf0.5Zr0.5O2 and 2D tungsten disulfide. Adv Electron Mater, 2020, 6: 2000057

    Article  Google Scholar 

  15. Wan C J, Chen G, Fu Y M, et al. An artificial sensory neuron with tactile perceptual learning. Adv Mater, 2018, 30: 1801291

    Article  Google Scholar 

  16. Li X, Tang J, Zhang Q, et al. Power-efficient neural network with artificial dendrites. Nat Nanotechnol, 2020, 15: 776–782

    Article  Google Scholar 

  17. Wan X, Yang Y, Feng P, et al. Short-term plasticity and synaptic filtering emulated in electrolyte-gated IGZO transistors. IEEE Electron Device Lett, 2016, 37: 299–302

    Article  Google Scholar 

  18. Wan C J, Zhu L Q, Liu Y H, et al. Proton-conducting graphene oxide-coupled neuron transistors for brain-inspired cognitive systems. Adv Mater, 2016, 28: 3557–3563

    Article  Google Scholar 

  19. Liu Y H, Zhu L Q, Feng P, et al. Freestanding artificial synapses based on laterally proton-coupled transistors on chitosan membranes. Adv Mater, 2015, 27: 5599–5604

    Article  Google Scholar 

  20. Zhu L Q, Wan C J, Guo L Q, et al. Artificial synapse network on inorganic proton conductor for neuromorphic systems. Nat Commun, 2014, 5: 3158

    Article  Google Scholar 

  21. Li E L, Lin W K, Yan Y J, et al. Synaptic transistor capable of accelerated learning induced by temperature-facilitated modulation of synaptic plasticity. ACS Appl Mater Interfaces, 2019, 11: 46008–46016

    Article  Google Scholar 

  22. Xiao M, Yeow T, Nguyen V H, et al. Ultrathin TiOx interface-mediated ZnO-nanowire memristive devices emulating synaptic behaviors. Adv Electron Mater, 2019, 5: 1900142

    Article  Google Scholar 

  23. Grahame D C. The electrical double layer and the theory of electrocapillarity. Chem Rev, 1947, 41: 441–501

    Article  Google Scholar 

  24. You I, Mackanic D G, Matsuhisa N, et al. Artificial multimodal receptors based on ion relaxation dynamics. Science, 2020, 370: 961–965

    Article  Google Scholar 

  25. Shim Y, Kim H J. Dielectric relaxation and solvation dynamics in a room-temperature ionic liquid: temperature dependence. J Phys Chem B, 2013, 117: 11743–11752

    Article  Google Scholar 

  26. Zhang J, Dai J, Zhu L, et al. Laterally coupled IZO-based transistors on free-standing proton conducting chitosan membranes. IEEE Electron Device Lett, 2014, 35: 838–840

    Article  Google Scholar 

  27. He Y, Nie S, Liu R, et al. Spatiotemporal information processing emulated by multiterminal neuro-transistor networks. Adv Mater, 2019, 31: 1900903

    Article  Google Scholar 

  28. Kuzum D, Jeyasingh R G D, Lee B, et al. Nanoelectronic programmable synapses based on phase change materials for brain-inspired computing. Nano Lett, 2012, 12: 2179–2186

    Article  Google Scholar 

  29. Bi G, Poo M. Synaptic modifications in cultured hippocampal neurons: dependence on spike timing, synaptic strength, and postsynaptic cell type. J Neurosci, 1998, 18: 10464–10472

    Article  Google Scholar 

  30. Chang G W, Chang T C, Jhu J C, et al. Temperature-dependent instability of bias stress in InGaZnO thin-film transistors. IEEE Trans Electron Dev, 2014, 61: 2119–2124

    Article  Google Scholar 

  31. Dai C, Chen P, Qi S, et al. Ultrathin flexible InGaZnO transistor for implementing multiple functions with a very small circuit footprint. Nano Res, 2021, 14: 232–238

    Article  Google Scholar 

  32. Zhao D, Fabiano S, Berggren M, et al. Ionic thermoelectric gating organic transistors. Nat Commun, 2017, 8: 14214

    Article  Google Scholar 

  33. Bi G, Poo M. Distributed synaptic modification in neural networks induced by patterned stimulation. Nature, 1999, 401: 792–796

    Article  Google Scholar 

  34. Gardner D, Stevens C F. Rate-limiting step of inhibitory post-synaptic current decay in Aplysia buccal ganglia. J Physiol, 1980, 304: 145–164

    Article  Google Scholar 

  35. Karim M R, Hatakeyama K, Matsui T, et al. Graphene oxide nanosheet with high proton conductivity. J Am Chem Soc, 2013, 135: 8097–8100

    Article  Google Scholar 

  36. Sun L, Zhang Y, Hwang G, et al. Synaptic computation enabled by joule heating of single-layered semiconductors for sound localization. Nano Lett, 2018, 18: 3229–3234

    Article  Google Scholar 

  37. Regehr W G. Short-term presynaptic plasticity. Cold Spring Harbor Perspect Biol, 2012, 4: a005702

    Article  Google Scholar 

  38. Fortune E S, Rose G J. Short-term synaptic plasticity contributes to the temporal filtering of electrosensory information. J Neurosci, 2000, 20: 7122–7130

    Article  Google Scholar 

  39. Abbott L F, Regehr W G. Synaptic computation. Nature, 2004, 431: 796–803

    Article  Google Scholar 

  40. Krueppel R, Remy S, Beck H. Dendritic integration in hippocampal dentate granule cells. Neuron, 2011, 71: 512–528

    Article  Google Scholar 

  41. Jiang J, Guo J, Wan X, et al. 2D MoS2 neuromorphic devices for brain-like computational systems. Small, 2017, 13: 1700933

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by National Key R&D Program of China (Grant No. 2019YFB2205400).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Changjin Wan or Qing Wan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, Y., He, Y., Chen, C. et al. IGZO-based neuromorphic transistors with temperature-dependent synaptic plasticity and spiking logics. Sci. China Inf. Sci. 65, 162401 (2022). https://doi.org/10.1007/s11432-021-3326-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11432-021-3326-6

Keywords

Navigation