Skip to main content
Log in

Time and energy efficient data collection via UAV

  • Research Paper
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

Using unmanned aerial vehicles (UAVs) for data collection has emerged as a promising technique to achieve both time- and energy-efficient data gathering while keeping data fresh. In this study, two schemes are proposed for flight cycle minimization and energy efficiency maximization to collect data from ground sensors. We first minimize the flight cycle by jointly optimizing the wake-up scheduling of sensors, the trajectory, and the time slot, which is a mixed-integer non-convex problem and difficult to solve directly. To this end, we propose an iterative algorithm based on block coordinate descent and successive convex approximation to decouple the original non-convex problem into two sub-problems and the constraints are turned to be convex approximately. Furthermore, the energy efficiency is maximized since the limited energy is a critical issue in UAV communication systems. We approximate the two subproblems as convex optimizations by introducing slack variables and applying SCA. The approximate energy efficiency is a fractional expression, and we use Dinkelbach’s method to solve it. Numerical results show that the flight cycle is minimized in the first scheme with the data requirement satisfied, while in the second scheme, the energy efficiency is maximized with the trade-off between the transmission data and the propulsion power consumption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zeng Y, Zhang R, Lim T J. Wireless communications with unmanned aerial vehicles: opportunities and challenges. IEEE Commun Mag, 2016, 54: 36–42

    Article  Google Scholar 

  2. Gupta L, Jain R, Vaszkun G. Survey of important issues in UAV communication networks. IEEE Commun Surv Tut, 2016, 18: 1123–1152

    Article  Google Scholar 

  3. Mozaffari M, Saad W, Bennis M, et al. Unmanned aerial vehicle with underlaid device-to-device communications: performance and tradeoffs. IEEE Trans Wirel Commun, 2016, 15: 3949–3963

    Article  Google Scholar 

  4. Lyu J B, Zeng Y, Zhang R. Cyclical multiple access in UAV-aided communications: a throughput-delay tradeoff. IEEE Wirel Commun Lett, 2016, 5: 600–603

    Article  Google Scholar 

  5. Mozaffari M, Saad W, Bennis M, et al. Efficient deployment of multiple unmanned aerial vehicles for optimal wireless coverage. IEEE Commun Lett, 2016, 20: 1647–1650

    Article  Google Scholar 

  6. Al-Hourani A, Kandeepan S, Lardner S. Optimal LAP altitude for maximum coverage. IEEE Wirel Commun Lett, 2014, 3: 569–572

    Article  Google Scholar 

  7. Zeng Y, Zhang R, Lim T J. Throughput maximization for UAV-enabled mobile relaying systems. IEEE Trans Commun, 2016, 64: 4983–4996

    Article  Google Scholar 

  8. Cheng F, Zhang S, Li Z, et al. UAV trajectory optimization for data offloading at the edge of multiple cells. IEEE Trans Veh Technol, 2018, 67: 6732–6736

    Article  Google Scholar 

  9. Pearre B, Brown T X. Model-free trajectory optimization for wireless data ferries among multiple sources. In: Proceedings of IEEE Globecom Workshops, Miami, 2010. 1793–1798

  10. Lyu J B, Zeng Y, Zhang R, et al. Placement optimization of UAV-mounted mobile base stations. IEEE Commun Lett, 2017, 21: 604–607

    Article  Google Scholar 

  11. Alzenad M, El-Keyi A, Lagum F, et al. 3-D placement of an unmanned aerial vehicle base station (UAV-BS) for energy-efficient maximal coverage. IEEE Wirel Commun Lett, 2017, 6: 434–437

    Article  Google Scholar 

  12. Zhan C, Zeng Y, Zhang R. Energy-efficient data collection in UAV enabled wireless sensor network. IEEE Wirel Commun Lett, 2018, 7: 328–331

    Article  Google Scholar 

  13. Zhan C, Zeng Y. Aerial-ground cost tradeoff for multi-UAV-enabled data collection in wireless sensor networks. IEEE Trans Commun, 2020, 68: 1937–1950

    Article  Google Scholar 

  14. Xu X L, Zeng Y, Guan Y L, et al. Overcoming endurance issue: UAV-enabled communications with proactive caching. IEEE J Sel Areas Commun, 2018, 36: 1231–1244

    Article  Google Scholar 

  15. Bertran E, Sànchez-Cerdà A. On the tradeoff between electrical power consumption and flight performance in fixed-wing UAV autopilots. IEEE Trans Veh Technol, 2016, 65: 8832–8840

    Article  Google Scholar 

  16. Sowah R A, Acquah M A, Ofoli A R, et al. Rotational energy harvesting to prolong flight duration of quadcopters. IEEE Trans Ind Appl, 2017, 53: 4965–4972

    Article  Google Scholar 

  17. Zeng Y, Xu X L, Zhang R. Trajectory design for completion time minimization in UAV-enabled multicasting. IEEE Trans Wirel Commun, 2018, 17: 2233–2246

    Article  Google Scholar 

  18. Zhan C, Zeng Y. Completion time minimization for multi-UAV-enabled data collection. IEEE Trans Wirel Commun, 2019, 18: 4859–4872

    Article  Google Scholar 

  19. Gong J, Chang T H, Shen C, et al. Flight time minimization of UAV for data collection over wireless sensor networks. IEEE J Sel Areas Commun, 2018, 36: 1942–1954

    Article  Google Scholar 

  20. Zong J Y, Shen C, Cheng J, et al. Flight time minimization via UAV’s trajectory design for ground sensor data collection. In: Proceedings of the 16th International Symposium on Wireless Communication Systems (ISWCS), Oulu, 2019. 255–259

  21. Jiang X, Sheng M, Zhao N, et al. Green UAV communications for 6G: a survey. Chin J Aeronaut, 2021. doi: https://doi.org/10.1016/j.cja.2021.04.025

  22. Bramwell A, Done G, Balmford D. Bramwell’s Helicopter Dynamics. Oxford: Butterworth-Heinemann, 2001

    Google Scholar 

  23. Di Franco C, Buttazzo G. Energy-aware coverage path planning of UAVs. In: Proceedings of IEEE International Conference on Autonomous Robot Systems and Competitions, 2015. 111–117

  24. Zeng Y, Xu J, Zhang R. Energy minimization for wireless communication with rotary-wing UAV. IEEE Trans Wirel Commun, 2019, 18: 2329–2345

    Article  Google Scholar 

  25. Zhang S W, Zeng Y, Zhang R. Cellular-enabled UAV communication: a connectivity-constrained trajectory optimization perspective. IEEE Trans Commun, 2019, 67: 2580–2604

    Article  Google Scholar 

  26. Yan H, Chen Y F, Yang S H. UAV-enabled wireless power transfer with base station charging and UAV power consumption. IEEE Trans Veh Technol, 2020, 69: 12883–12896

    Article  Google Scholar 

  27. Li K, Ni W, Wang X, et al. Energy-efficient cooperative relaying for unmanned aerial vehicles. IEEE Trans Mobile Comput, 2016, 15: 1377–1386

    Article  Google Scholar 

  28. Hua M, Wang Y, Zhang Z M, et al. Power-efficient communication in UAV-aided wireless sensor networks. IEEE Commun Lett, 2018, 22: 1264–1267

    Article  Google Scholar 

  29. Zeng Y, Zhang R. Energy-efficient UAV communication with trajectory optimization. IEEE Trans Wirel Commun, 2017, 16: 3747–3760

    Article  Google Scholar 

  30. Yang G, Dai R, Liang Y C. Energy-efficient UAV backscatter communication with joint trajectory design and resource optimization. IEEE Trans Wireless Commun, 2021, 20: 926–941

    Article  Google Scholar 

  31. Pang X W, Tang J, Zhao N, et al. Energy-efficient design for mmWave-enabled NOMA-UAV networks. Sci China Inf Sci, 2021, 64: 140303

    Article  MathSciNet  Google Scholar 

  32. Tseng P. Convergence of a block coordinate descent method for nondifferentiable minimization. J Optim Theor Appl, 2001, 109: 475–494

    Article  MathSciNet  MATH  Google Scholar 

  33. Beck A, Ben-Tal A, Tetruashvili L. A sequential parametric convex approximation method with applications to nonconvex truss topology design problems. J Glob Optim, 2010, 47: 29–51

    Article  MathSciNet  MATH  Google Scholar 

  34. Solomon D, Pluta V. Algorithms for Generalized Fractional Programming. Cambridge: Cambridge University Press, 2000

    Google Scholar 

  35. Dai H B, Zhang H Y, Hua M, et al. How to deploy multiple UAVs for providing communication service in an unknown region? IEEE Wirel Commun Lett, 2019, 8: 1276–1279

    Article  Google Scholar 

  36. Yang L, Meng F X, Zhang J Y, et al. On the performance of RIS-assisted dual-hop UAV communication systems. IEEE Trans Veh Technol, 2020, 69: 10385–10390

    Article  Google Scholar 

  37. Yang L, Chen J C, Hasna M O, et al. Outage performance of UAV-assisted relaying systems with RF energy harvesting. IEEE Commun Lett, 2018, 22: 2471–2474

    Article  Google Scholar 

  38. Lin X Q, Yajnanarayana V, Muruganathan S D, et al. The sky is not the limit: LTE for unmanned aerial vehicles. IEEE Commun Mag, 2018, 56: 204–210

    Article  Google Scholar 

  39. Zhou F H, Wu Y P, Hu R Q, et al. Computation rate maximization in UAV-enabled wireless-powered mobile-edge computing systems. IEEE J Sel Areas Commun, 2018, 36: 1927–1941

    Article  Google Scholar 

  40. Hua M, Yang L X, Li C G, et al. Throughput maximization for UAV-aided backscatter communication networks. IEEE Trans Commun, 2020, 68: 1254–1270

    Article  Google Scholar 

  41. Wu Q Q, Zeng Y, Zhang R. Joint trajectory and communication design for multi-UAV enabled wireless networks. IEEE Trans Wirel Commun, 2018, 17: 2109–2121

    Article  Google Scholar 

  42. Wang K Y, So A M C, Chang T H, et al. Outage constrained robust transmit optimization for multiuser MISO downlinks: tractable approximations by conic optimization. IEEE Trans Signal Process, 2014, 62: 5690–5705

    Article  MathSciNet  MATH  Google Scholar 

  43. Ju H, Zhang R. User cooperation in wireless powered communication networks. In: Proceedings of IEEE Global Communications Conference, Austin, 2014. 1430–1435

  44. Ju H, Zhang R. Optimal resource allocation in full-duplex wireless-powered communication network. IEEE Trans Commun, 2014, 62: 3528–3540

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by National Key R&D Program of China (Grant No. 2020YFB1807002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nan Zhao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, T., Pang, X., Tang, J. et al. Time and energy efficient data collection via UAV. Sci. China Inf. Sci. 65, 182302 (2022). https://doi.org/10.1007/s11432-021-3343-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11432-021-3343-7

Keywords

Navigation