Skip to main content
Log in

Perpendicular magnetic anisotropy based spintronics devices in Pt/Co stacks under different hard and flexible substrates

  • Research Paper
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

The magnetic properties in substrate/Pt/Co multilayers, such as perpendicular magnetic anisotropy (PMA), are of particular interest for spintronic devices. In particular, it is important to obtain a strong PMA on the flexible substrate in the field of wearable devices and structural health monitoring. However, the different stacks deposition and regulation conditions on the magnetic properties of the films lack systematic research. Here, we investigate the magnetic properties in Pt/Co structures with different hard and flexible substrates, layer thicknesses, and the different deposition temperatures of the buffer layer. We found that the coercive field and magnetodynamic behavior of the films change with these factors. Moreover, depositing the buffer layer under high temperature can effectively adjust the crystalline state of the films, thus affecting the performance of the films. After depositing the buffer layer at 800°C, our films can obtain a better crystalline state and PMA. The measurement results of the magneto-optical Kerr microscope show that the magnetic domain wall motion of the films can be controlled by different substrate and buffer layer conditions. It was expected that ultra-fast magnetic moment switching can be achieved by optimizing the conditions to reduce the power consumption of the device. The experimental results also show that the optimized film conditions can also obtain strong PMA on the flexible substrate. These findings help to understand magnetic properties in these structures and show the promising prospect for wearable devices and other spintronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Melzer M, Kaltenbrunner M, Makarov D, et al. Imperceptible magnetoelectronics. Nat Commun, 2015, 6: 6080

    Article  Google Scholar 

  2. Rogers J A, Someya T, Huang Y. Materials and mechanics for stretchable electronics. Science, 2010, 327: 1603–1607

    Article  Google Scholar 

  3. Li Y, Zheng L, Wang X W. Flexible and wearable healthcare sensors for visual reality health-monitoring. Virtual Real Intell Hardware, 2019, 1: 411–427

    Article  Google Scholar 

  4. Nistor L E, Rodmacq B, Auffret S, et al. Pt/Co/oxide and oxide/Co/Pt electrodes for perpendicular magnetic tunnel junctions. Appl Phys Lett, 2009, 94: 012512

    Article  Google Scholar 

  5. Zhang B Y, Zhu D Q, Xu Y, et al. Optoelectronic domain-wall motion for logic computing. Appl Phys Lett, 2020, 116: 252403

    Article  Google Scholar 

  6. Lin W W, Sang H, Liu D, et al. Magnetization switching induced by in-plane current with low density in Pt/Co/Pt sandwich. J Appl Phys, 2006, 99: 08G518

    Article  Google Scholar 

  7. Wang Z L, Cheng H Y, Shi K W, et al. Modulation of field-like spin orbit torque in heavy metal/ferromagnet heterostructures. Nanoscale, 2020, 12: 15246–15251

    Article  Google Scholar 

  8. Cao Z Q, Wei Y M, Chen W J, et al. Tuning the pinning direction of giant magnetoresistive sensor by post annealing process. Sci China Inf Sci, 2021, 64: 162402

    Article  Google Scholar 

  9. You L, Lee O J, Bhowmik D, et al. Switching of perpendicularly polarized nanomagnets with spin orbit torque without an external magnetic field by engineering a tilted anisotropy. Proc Natl Acad Sci USA, 2015, 112: 10310–10315

    Article  Google Scholar 

  10. Yu G Q, Upadhyaya P, Fan Y B, et al. Switching of perpendicular magnetization by spin-orbit torques in the absence of external magnetic fields. Nat Nanotech, 2014, 9: 548–554

    Article  Google Scholar 

  11. Guo Z X, Yin J L, Bai Y, et al. Spintronics for energy-efficient computing: an overview and outlook. Proc IEEE, 2021, 109: 1398–1417

    Article  Google Scholar 

  12. Cheng H Y, Chen J L, Peng S Z, et al. Giant perpendicular magnetic anisotropy in Mo-based double-interface free layer structure for advanced magnetic tunnel junctions. Adv Electron Mater, 2020, 6: 2000271

    Article  Google Scholar 

  13. Ota S, Ando A, Chiba D. A flexible giant magnetoresistive device for sensing strain direction. Nat Electron, 2018, 1: 124–129

    Article  Google Scholar 

  14. Wang M X, Cai W L, Cao K H, et al. Current-induced magnetization switching in atom-thick tungsten engineered perpendicular magnetic tunnel junctions with large tunnel magnetoresistance. Nat Commun, 2018, 9: 671

    Article  Google Scholar 

  15. Ota S, Hibino Y, Bang D, et al. Strain-induced reversible modulation of the magnetic anisotropy in perpendicularlymagnetized metals deposited on a flexible substrate. Appl Phys Express, 2016, 9: 043004

    Article  Google Scholar 

  16. Lee O J, You L, Jang J, et al. Flexible spin-orbit torque devices. Appl Phys Lett, 2015, 107: 252401

    Article  Google Scholar 

  17. Zhao S S, Zhou Z Y, Li C L, et al. Low-voltage control of (Co/Pt)x perpendicular magnetic anisotropy heterostructure for flexible spintronics. ACS Nano, 2018, 12: 7167–7173

    Article  Google Scholar 

  18. Matsumoto H, Ota S, Koyama T, et al. Control of magnetic anisotropy in a Co thin film on a flexible substrate by applying biaxial tensile strain. Appl Phys Lett, 2021, 118: 022406

    Article  Google Scholar 

  19. Cheng H Y, Zhang B Y, Xu Y, et al. Mo-based perpendicularly magnetized thin films with low-damping for fast and low-power consumption magnetic memory. Sci China-Phys Mech Astron. doi: https://doi.org/10.1007/s11433-021-1875-6

  20. Lin W W, Lei N, Vernier N, et al. Perpendicular magnetic anisotropy in piezoelectric- and dielectric-ferromagnetic heterostructures based on Co/Pt multilayers. Thin Solid Films, 2013, 533: 70–74

    Article  Google Scholar 

  21. Tan F N, Lim G J, Jin T L, et al. Electric field control on single and double Pt/Co heterostructure for enhanced thermal stability. J Magn Magn Mater, 2019, 490: 165448

    Article  Google Scholar 

  22. Kalaycı T, Deger C, Akbulut S, et al. Tuning magnetic properties of non-collinear magnetization configuration in Pt/[Pt/Co]6/Pt/Co/Pt multilayer structure. J Magn Magn Mater, 2017, 436: 11–16

    Article  Google Scholar 

  23. Huang J C A, Chen M M, Lee C H, et al. Pt thickness and buffer layer effects on the structure and magnetism of Co/Pt multilayers. J Magn Magn Mater, 2002, 239: 326–328

    Article  Google Scholar 

  24. Xie H, Yuan J, Luo Z Y, et al. In-situ study of oxygen exposure effect on spin-orbit torque in Pt/Co bilayers in ultrahigh vacuum. Sci Rep, 2019, 9: 1–10

    Article  Google Scholar 

  25. Hehn M, Padovani S, Ounadjela K, et al. Nanoscale magnetic domain structures in epitaxial cobalt films. Phys Rev B, 1996, 54: 3428–3433

    Article  Google Scholar 

  26. Haazen P P J, Muré E, Franken J H, et al. Domain wall depinning governed by the spin Hall effect. Nat Mater, 2013, 12: 299–303

    Article  Google Scholar 

  27. Zhang X Y, Vernier N, Zhao W S, et al. Direct observation of domain-wall surface tension by deflating or inflating a magnetic bubble. Phys Rev Appl, 2018, 9: 024032

    Article  Google Scholar 

  28. Kim D H, Yoo S C, Kim D Y, et al. Maximizing domain-wall speed via magnetic anisotropy adjustment in Pt/Co/Pt films. Appl Phys Lett, 2014, 104: 142410

    Article  Google Scholar 

  29. Kim N H, Han D S, Jung J, et al. Improvement of the interfacial Dzyaloshinskii-Moriya interaction by introducing a Ta buffer layer. Appl Phys Lett, 2015, 107: 142408

    Article  Google Scholar 

  30. Ellis E A I, Chmielus M, Han S C, et al. Effect of sputter pressure on microstructure and properties of β-Ta thin films. Acta Mater, 2020, 183: 504–513

    Article  Google Scholar 

  31. Ellis E A I, Chmielus M, Baker S P. Effect of sputter pressure on Ta thin films: beta phase formation, texture, and stresses. Acta Mater, 2018, 150: 317–326

    Article  Google Scholar 

  32. Kools J C S. Effect of energetic particle bombardment during sputter deposition on the properties of exchange-biased spin-valve multilayers. J Appl Phys, 1995, 77: 2993–2998

    Article  Google Scholar 

  33. Tang X L, Yu Y, Liu R, et al. Ultra-low-pressure sputtering to improve exchange bias and tune linear ranges in spin valves. J Magn Magn Mater, 2017, 429: 65–68

    Article  Google Scholar 

  34. Park C M, Shin K H. Reduction of interlayer coupling in NiFeCo/Cu/NiFeCo/FeMn spin valve structures by lowering argon sputtering pressure. Appl Phys Lett, 1997, 70: 776–778

    Article  Google Scholar 

  35. Kaidatzis A, Bran C, Psycharis V, et al. Tailoring the magnetic anisotropy of CoFeB/MgO stacks onto W with a Ta buffer layer. Appl Phys Lett, 2015, 106: 262401

    Article  Google Scholar 

  36. Mukhopadhyay A, Koyiloth Vayalil S, Graulich D, et al. Asymmetric modification of the magnetic proximity effect in Pt/Co/Pt trilayers by the insertion of a Ta buffer layer. Phys Rev B, 2020, 102: 144435

    Article  Google Scholar 

  37. Zhao K, Wong H K. Epitaxial growth of platinum thin films on various substrates by facing-target sputtering technique. J Cryst Growth, 2003, 256: 283–287

    Article  Google Scholar 

  38. Ryu J, Avci C O, Karube S, et al. Crystal orientation dependence of spin-orbit torques in Co/Pt bilayers. Appl Phys Lett, 2019, 114: 142402

    Article  Google Scholar 

  39. Liu Y F, Cai J W, He S L. Large perpendicular exchange bias in IrMn/CoFe/[Pt/Co] multilayers grown on a Ta/Pt buffer layer. J Phys D-Appl Phys, 2009, 42: 115002

    Article  Google Scholar 

  40. Lee T Y, Son D S, Lim S H, et al. High post-annealing stability in [Pt/Co] multilayers. J Appl Phys, 2013, 113: 216102

    Article  Google Scholar 

  41. Lee T Y, Won Y C, Son D S, et al. Effects of Co layer thickness and annealing temperature on the magnetic properties of inverted [Pt/Co] multilayers. J Appl Phys, 2013, 114: 173909

    Article  Google Scholar 

  42. Zhang Y, Zhang X Y, Vernier N, et al. Domain-wall motion driven by laplace pressure in Co−Fe−B/MgO nanodots with perpendicular anisotropy. Phys Rev Appl, 2018, 9: 064027

    Article  Google Scholar 

  43. Fukami S, Yamanouchi M, Ikeda S, et al. Domain wall motion device for nonvolatile memory and logic-size dependence of device properties. IEEE Trans Magn, 2014, 50: 1–6

    Article  Google Scholar 

  44. Fukami S, Suzuki T, Tanigawa H, et al. Stack structure dependence of Co/Ni multilayer for current-induced domain wall motion. Appl Phys Express, 2010, 3: 113002

    Article  Google Scholar 

  45. Laufenberg M, Bührer W, Bedau D, et al. Temperature dependence of the spin torque effect in current-induced domain wall motion. Phys Rev Lett, 2006, 97: 046602

    Article  Google Scholar 

  46. Denis L M, Esteves G, Walker J, et al. Thickness dependent response of domain wall motion in declamped {001} Pb(Zr0.3Ti0.7)O3 thin films. Acta Mater, 2018, 151: 243–252

    Article  Google Scholar 

  47. Fukumoto K, Kuch W, Vogel J, et al. Dynamics of magnetic domain wall motion after nucleation: dependence on the wall energy. Phys Rev Lett, 2006, 96: 097204

    Article  Google Scholar 

  48. Pennec Y, Camarero J, Toussaint J C, et al. Switching-mode-dependent magnetic interlayer coupling strength in spin valves and magnetic tunnel junctions. Phys Rev B, 2004, 69: 180402

    Article  Google Scholar 

  49. Fukumoto K, Kuch W, Vogel J, et al. Mobility of domain wall motion in the permalloy layer of a spin-valve-like Fe20Ni80/Cu/Co trilayer. J Magn Magn Mater, 2005, 293: 863–871

    Article  Google Scholar 

  50. Burrowes C, Vernier N, Adam J P, et al. Low depinning fields in Ta−CoFeB−MgO ultrathin films with perpendicular magnetic anisotropy. Appl Phys Lett, 2013, 103: 182401

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by National Key R&D Program of China (Grant No. 2018YFB0407602), Science and Technology Major Project of Anhui Province (Grant No. 202003a05020050), National Natural Science Foundation of China (Grant Nos. 61627813, 61571023), International Collaboration Project (Grant No. B16001), National Key Technology Program of China (Grant No. 2017ZX01032101), and Beihang Hefei Innovation Research Institute Project (Grant Nos. BHKX-19-01, BHKX-19-02).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sylvain Eimer, Xueying Zhang or Weisheng Zhao.

Additional information

Supporting information Appendix A: HR-TEM results in Ta/Pt/Co/Pt stacks. Appendix B: more magneto-optical Kerr microscope test images. The supporting information is available online at https://info.scichina.com and https://link.springer.com. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Supplementary File

11432_2021_3371_MOESM1_ESM.pdf

Perpendicular magnetic anisotropy based spintronics devices in Pt/Co stacks under different hard and flexible substrates

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eimer, S., Cheng, H., Li, J. et al. Perpendicular magnetic anisotropy based spintronics devices in Pt/Co stacks under different hard and flexible substrates. Sci. China Inf. Sci. 66, 122408 (2023). https://doi.org/10.1007/s11432-021-3371-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11432-021-3371-4

Keywords

Navigation