Skip to main content
Log in

Pattern-based learning and control of nonlinear pure-feedback systems with prescribed performance

  • Research Paper
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

This article presents a novel pattern-based intelligent control scheme with prescribed performance (PP) for uncertain pure-feedback systems operating in multiple control situations (patterns). Based on PP, an observer-based adaptive neural network (NN) control approach, which not only achieves system stability and prescribed tracking control performance but also realizes accurate identification/learning of the unknown closed-loop dynamics via deterministic learning and uses only one NN unit, is proposed. Subsequently, the knowledge learned is utilized to construct high-performance candidate controllers for each control situation. Based on the transformed system and observer technique, accurate classification of the nth order systems under different control situations is achieved by requiring only one set of dynamic estimators, thereby significantly reducing the complexity of pattern recognition. Thus, sudden changes in the control situation can be rapidly recognized based on the minimum residual principle, with which the correct candidate controller is selected to achieve superior control performance. The simulation results verify the efficacy of the proposed scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Narendra K S, Balakrishnan J. Adaptive control using multiple models. IEEE Trans Automat Contr, 1997, 42: 171–187

    Article  MathSciNet  Google Scholar 

  2. Fu K S. Learning control systems—review and outlook. IEEE Trans Automat Contr, 1970, 15: 210–221

    Article  MathSciNet  Google Scholar 

  3. Fu K S, Mendel J M. Adaptive, Learning, and Pattern Recognition Systems: Theory and Applications. Pittsburgh: Academic Press, 1970

    Google Scholar 

  4. Lu S W, Basar T. Robust nonlinear system identification using neural-network models. IEEE Trans Neural Netw, 1998, 9: 407–429

    Article  CAS  PubMed  Google Scholar 

  5. Wang L Q, Dong J X. Adaptive fuzzy consensus tracking control for uncertain fractional-order multiagent systems with event-triggered input. IEEE Trans Fuzzy Syst, 2022, 30: 310–320

    Article  CAS  Google Scholar 

  6. Chen W L, Wang J H, Ma K M, et al. Adaptive event-triggered neural control for nonlinear uncertain system with input constraint. Int J Robust Nonlinear Control, 2020, 30: 3801–3815

    Article  MathSciNet  Google Scholar 

  7. Ge S S, Wang C. Adaptive NN control of uncertain nonlinear pure-feedback systems. Automatica, 2002, 38: 671–682

    Article  MathSciNet  Google Scholar 

  8. Wang C, Hill D J, Ge S S, et al. An ISS-modular approach for adaptive neural control of pure-feedback systems. Automatica, 2006, 42: 723–731

    Article  MathSciNet  CAS  Google Scholar 

  9. Liu Y J, Zhao W, Liu L, et al. Adaptive neural network control for a class of nonlinear systems with function constraints on states. IEEE Trans Neural Netw Learn Syst, 2021. doi: https://doi.org/10.1109/TNNLS.2021.3107600

  10. Xin C, Li Y X, Ahn C K. Adaptive neural asymptotic tracking of uncertain non-strict feedback systems with full-state constraints via command filtered technique. IEEE Trans Neural Netw Learn Syst, 2022. doi: https://doi.org/10.1109/TNNLS.2022.3141091

  11. Wu J, Sun W, Su S F, et al. Neural-based adaptive control for nonlinear systems with quantized input and the output constraint. Appl Math Comput, 2022, 413: 126637

    MathSciNet  Google Scholar 

  12. Lin Z B, Liu Z, Zhang Y, et al. Adaptive neural inverse optimal tracking control for uncertain multi-agent systems. Inf Sci, 2022, 584: 31–49

    Article  Google Scholar 

  13. Swaroop D, Hedrick J K, Yip P P, et al. Dynamic surface control for a class of nonlinear systems. IEEE Trans Automat Contr, 2000, 45: 1893–1899

    Article  MathSciNet  Google Scholar 

  14. Zhang T P, Ge S S. Adaptive dynamic surface control of nonlinear systems with unknown dead zone in pure feedback form. Automatica, 2008, 44: 1895–1903

    Article  MathSciNet  Google Scholar 

  15. Sui S, Chen C L P, Tong S. Neural-network-based adaptive DSC design for switched fractional-order nonlinear systems. IEEE Trans Neural Netw Learn Syst, 2021, 32: 4703–4712

    Article  MathSciNet  PubMed  Google Scholar 

  16. Wang D. Neural network-based adaptive dynamic surface control of uncertain nonlinear pure-feedback systems. Int J Robust Nonlinear Control, 2011, 21: 527–541

    Article  MathSciNet  Google Scholar 

  17. Bechlioulis C P, Rovithakis G A. Robust adaptive control of feedback linearizable MIMO nonlinear systems with prescribed performance. IEEE Trans Automat Contr, 2008, 53: 2090–2099

    Article  MathSciNet  Google Scholar 

  18. Bechlioulis C P, Doulgeri Z, Rovithakis G A. Neuro-adaptive force/position control with prescribed performance and guaranteed contact maintenance. IEEE Trans Neural Netw, 2010, 21: 1857–1868

    Article  PubMed  Google Scholar 

  19. Liu Y J, Zeng Q, Tong S, et al. Actuator failure compensation-based adaptive control of active suspension systems with prescribed performance. IEEE Trans Ind Electron, 2020, 67: 7044–7053

    Article  Google Scholar 

  20. Ye X D. Nonlinear adaptive control using multiple identification models. Syst Control Lett, 2008, 57: 578–584

    Article  MathSciNet  Google Scholar 

  21. Han Z, Narendra K S. New concepts in adaptive control using multiple models. IEEE Trans Automat Contr, 2012, 57: 78–89

    Article  MathSciNet  Google Scholar 

  22. Li X L, Jia C, Liu D X, et al. Nonlinear adaptive control using multiple models and dynamic neural networks. Neurocomputing, 2014, 136: 190–200

    Article  Google Scholar 

  23. Antsaklis P J. Intelligent learning control. IEEE Control Syst Mag, 1995, 15: 5–7

    Article  Google Scholar 

  24. Wang C, Hill D J. Learning from neural control. IEEE Trans Neural Netw, 2006, 17: 130–146

    Article  PubMed  Google Scholar 

  25. Wang C, Hill D J. Deterministic Learning Theory for Identification, Recognition, and Control. Boca Raton: CRC Press, 2009

    Google Scholar 

  26. Liu T F, Wang C, Hill D J. Learning from neural control of nonlinear systems in normal form. Syst Control Lett, 2009, 58: 633–638

    Article  MathSciNet  Google Scholar 

  27. Wang C, Wang M, Liu T F, et al. Learning from ISS-modular adaptive NN control of nonlinear strict-feedback systems. IEEE Trans Neural Netw Learn Syst, 2012, 23: 1539–1550

    Article  PubMed  Google Scholar 

  28. Dai S L, Wang C, Wang M. Dynamic learning from adaptive neural network control of a class of nonaffine nonlinear systems. IEEE Trans Neural Netw Learn Syst, 2014, 25: 111–123

    Article  PubMed  Google Scholar 

  29. Wang M, Wang C. Neural learning control of pure-feedback nonlinear systems. Nonlinear Dyn, 2015, 79: 2589–2608

    Article  MathSciNet  Google Scholar 

  30. Wang M, Wang C. Learning from adaptive neural dynamic surface control of strict-feedback systems. IEEE Trans Neural Netw Learn Syst, 2015, 26: 1247–1259

    Article  MathSciNet  PubMed  Google Scholar 

  31. Abdelatti M, Yuan C Z, Zeng W, et al. Cooperative deterministic learning control for a group of homogeneous nonlinear uncertain robot manipulators. Sci China Inf Sci, 2018, 61: 112201

    Article  MathSciNet  Google Scholar 

  32. Wang C, Hill D J. Deterministic learning and rapid dynamical pattern recognition. IEEE Trans Neural Netw, 2007, 18: 617–630

    Article  PubMed  Google Scholar 

  33. Wang C, Chen T R. Rapid detection of small oscillation faults via deterministic learning. IEEE Trans Neural Netw, 2011, 22: 1284–1296

    Article  PubMed  Google Scholar 

  34. Chen T R, Wang C, Chen G R, et al. Small fault detection for a class of closed-loop systems via deterministic learning. IEEE Trans Cybern, 2019, 49: 897–906

    Article  PubMed  Google Scholar 

  35. Wu W M, Wang Q, Yuan C Z, et al. Rapid dynamical pattern recognition for sampling sequences. Sci China Inf Sci, 2021, 64: 132201

    Article  MathSciNet  Google Scholar 

  36. Chen T R, Zhu Z J, Wang C, et al. Rapid sensor fault diagnosis for a class of nonlinear systems via deterministic learning. IEEE Trans Neural Netw Learn Syst, 2022, 33: 7743–7754

    Article  MathSciNet  PubMed  Google Scholar 

  37. Yang F F, Wang C. Pattern-based NN control of a class of uncertain nonlinear systems. IEEE Trans Neural Netw Learn Syst, 2018, 29: 1108–1119

    Article  PubMed  Google Scholar 

  38. Zhang F K, Wang C, Yang F F. Pattern-based NN control for uncertain pure-feedback nonlinear systems. J Franklin Inst, 2019, 356: 2530–2558

    Article  MathSciNet  Google Scholar 

  39. Krstic M, Kanellakopoulos I, Kokotovic P V. Nonlinear and Adaptive Control Design. New York: Wiley, 1995

    Google Scholar 

  40. Powell M J D, The Theory of Radial Basis Functions Approximation in 1990. Oxford: Oxford University Press, 1992

    Book  Google Scholar 

  41. Kurdila A J, Narcowich F J, Ward J D. Persistency of excitation in identification using radial basis function approximants. SIAM J Control Optim, 1995, 33: 625–642

    Article  MathSciNet  Google Scholar 

  42. Zhang F K, Wang C. Deterministic learning from neural control for uncertain nonlinear pure-feedback systems by output feedback. Int J Robust Nonlinear Control, 2020, 30: 2701–2718

    Article  MathSciNet  Google Scholar 

  43. Behtash S. Robust output tracking for non-linear systems. Int J Control, 1990, 51: 1381–1407

    Article  MathSciNet  Google Scholar 

  44. Apostol T M. Mathematical Analysis. Boston: Addison-Wesley, 1993

    Google Scholar 

  45. Farrell J A. Stability and approximator convergence in nonparametric nonlinear adaptive control. IEEE Trans Neural Netw, 1998, 9: 1008–1020

    Article  CAS  PubMed  Google Scholar 

  46. Khalil H. Nonlinear Systems. 3rd ed. Upper Saddle River: Prentice-Hall, 2002

    Google Scholar 

Download references

Acknowledgements

This work was supported by Major Program of the National Natural Science Foundation of China (Grant No. 61890922) and Major Basic Program of Shandong Provincial Natural Science Foundation, China (Grant No. ZR2020ZD40).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cong Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, F., Wu, W. & Wang, C. Pattern-based learning and control of nonlinear pure-feedback systems with prescribed performance. Sci. China Inf. Sci. 66, 112202 (2023). https://doi.org/10.1007/s11432-021-3434-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11432-021-3434-9

Keywords

Navigation