Skip to main content
Log in

Advances in wide-tuning and narrow-linewidth external-cavity diode lasers

  • Review
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

The external-cavity diode laser is advantageous in terms of low noise, high side-mode suppression ratio, high temperature stability, simple structure, and low cost, which has been the preferred scheme to realize wide-tuning and narrow-linewidth characteristics. Thus, it has been widely used in optical communication, lidar, environmental monitoring, spectral analysis, optical coherence tomography, and other frontier fields. Herein, we introduce the technical scheme and review the development status of wide-tuning and narrow-linewidth external-cavity diode lasers in detail. Primarily, the structure, working principles, and performance characteristics of external-cavity diode lasers are deeply analyzed according to different structures. The structural characteristics, key technologies, optical performance and application fields of state-of-the-art studies in recent years are discussed. Finally, the challenges and potential development prospects of wide-tuning and narrow-linewidth external-cavity diode lasers are analyzed and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cheng Q, Bahadori M, Glick M, et al. Recent advances in optical technologies for data centers: a review. Optica, 2018, 5: 1354–1370

    Article  Google Scholar 

  2. Olsson S L I, Cho J, Chandrasekhar S, et al. Probabilistically shaped PDM 4096-QAM transmission over up to 200 km of fiber using standard intradyne detection. Opt Express, 2018, 26: 4522

    Article  Google Scholar 

  3. Lu B, Wei F, Zhang Z, et al. Research on tunable local laser used in ground-to-satellite coherent laser communication. Chin Opt Lett, 2015, 13: 091402

    Article  Google Scholar 

  4. Yang Q F, Shen B, Wang H, et al. Vernier spectrometer using counterpropagating soliton microcombs. Science, 2019, 363: 965–968

    Article  Google Scholar 

  5. Poulton C V, Byrd M J, Russo P, et al. Long-range LiDAR and free-space data communication with high-performance optical phased arrays. IEEE J Sel Top Quantum Electron, 2019, 25: 1–8

    Article  Google Scholar 

  6. Lang X K, Jia P, Chen Y Y, et al. Advances in narrow linewidth diode lasers. Sci China Inf Sci, 2019, 62: 061401

    Article  Google Scholar 

  7. Gasmi K, Al-Jalal A, Al-Basheer W, et al. Blue external-cavity diode laser for NO2 gas detection. In: Proceedings of Semiconductor Lasers and Laser Dynamics IX, ELECTR NETWORK, 2020. 1135616

  8. Zhao Q L, Zhang Z T, Wu B, et al. Noise-sidebands-free and ultra-low-RIN 15 µm single-frequency fiber laser towards coherent optical detection. Photon Res, 2018, 6: 326–331

    Article  Google Scholar 

  9. Wu W R, Chen M, Zhang Z, et al. Overview of deep space laser communication. Sci China Inf Sci, 2018, 61: 040301

    Article  MathSciNet  Google Scholar 

  10. Grafen M, Delbeck S, Busch H, et al. Evaluation and benchmarking of an EC-QCL-based mid-infrared spectrometer for monitoring metabolic blood parameters in critical care units. In: Proceedings of Optical Diagnostics and Sensing XVIII: Toward Point-of-Care Diagnostics, San Francisco, 2018

  11. Newman Z L, Maurice V, Drake T, et al. Architecture for the photonic integration of an optical atomic clock. Optica, 2019, 6: 680–685

    Article  Google Scholar 

  12. Hjelme D, Mickelson A. On the theory of external cavity operated single-mode semiconductor lasers. IEEE J Quantum Electron, 1987, 23: 1000–1004

    Article  Google Scholar 

  13. Kakiuchida H, Ohtsubo J. Characteristics of a semiconductor laser with external feedback. IEEE J Quantum Electron, 1994, 30: 2087–2097

    Article  Google Scholar 

  14. Ghafouri-Shiraz H, Lo B S K. Distributed Feedback Laser Diodes: Principles and Physical Modelling. New Jersey: John Wiley & Sons, Inc, 1997

    Google Scholar 

  15. Kotaki Y, Ishikawa H. Wavelength tunable DFB and DBR lasers for coherent optical fibre communications. IEE Proc J Optoelectron UK, 1991, 138: 171–177

    Article  Google Scholar 

  16. Luo C C, Zhang R Y, Qiu B C, et al. Waveguide external cavity narrow linewidth semiconductor lasers. J Semicond, 2021, 42: 041308

    Article  Google Scholar 

  17. Wang Y, Zhou Y L, Wu H, et al. A tunable external cavity laser operating at excited states of bimodal-sized quantum-dot. Jpn J Appl Phys, 2019, 58: 051013

    Article  Google Scholar 

  18. Podoskin A, Golovin V, Gavrina P, et al. Ultrabroad tuning range (100 nm) of external-cavity continuous-wave high-power semiconductor lasers based on a single InGaAs quantum well. Appl Opt, 2019, 58: 9089–9093

    Article  Google Scholar 

  19. Ojanen S P, Viheriälä J, Cherchi M, et al. GaSb diode lasers tunable around 2.6 µm using silicon photonics resonators or external diffractive gratings. Appl Phys Lett, 2020, 116: 081105

    Article  Google Scholar 

  20. Shirazi M F, Kim P, Jeon M, et al. Free space broad-bandwidth tunable laser diode based on Littman configuration for 3D profile measurement. Opt Laser Tech, 2018, 101: 462–467

    Article  Google Scholar 

  21. Kapasi D P, Eichholz J, McRae T, et al. Tunable narrow-linewidth laser at 2 µm wavelength for gravitational wave detector research. Opt Express, 2020, 28: 3280–3288

    Article  Google Scholar 

  22. de Labachelerie M, Sasada H, Passedat G. Mode-hop suppression of Littrow grating-tuned. Appl Opt, 1994, 33: 3817–3819

    Article  Google Scholar 

  23. Long R, Wang H L, Gong Q, et al. Optical feedback of semiconductor external cavity laser (in Chinese). Commun Technol, 2013, 46: 142–144

    Google Scholar 

  24. Duarte F J. Tunable Lasers Handbook. San Diego: Academic Press, 1995

    Google Scholar 

  25. Zhou P, Wu Y Q, Zhang R Z. Effect of collimating lens misalignment on linewidth of littman-Metcalf grating external cavity laser (in Chinese). Infrared Laser Eng, 2021, doi: https://doi.org/10.3788/IRLA20210168

  26. Sun H, Menhart S, Adams A. Calculation of spectral linewidth reduction of external-cavity strong-feedback semiconductor lasers. Appl Opt, 1994, 33: 4771–4775

    Article  Google Scholar 

  27. Loh H Q, Lin Y J, Teper I, et al. Influence of grating parameters on the linewidths of external-cavity diode lasers. Appl Opt, 2006, 45: 9191–9197

    Article  Google Scholar 

  28. Zhang X M, Wang N, Gao L, et al. Narrow-linewidth external-cavity tunable lasers. In: Proceedings of International Conference on Optical Communications & Networks, Guangzhou, 2011

  29. Gambell A, Simakov N, Ganija M, et al. Intra-cavity semiconductor laser tuning using a frequency compensating acoustooptic tunable filter pair. In: Proceedings of AOS Australian Conference on Optical Fibre Technology (ACOFT) and Australian Conference on Optics, Lasers, and Spectroscopy (ACOLS), Melbourne, 2019

  30. Magdich L N, Chamorovskiy A Y, Shidlovsky V R, et al. Tunable semiconductor laser with two acousto-optic tunable filters in its external cavity. Quantum Electron, 2020, 50: 136–140

    Article  Google Scholar 

  31. Ménager L, Cabaret L, Lorgeré I, et al. Diode laser extended cavity for broad-range fast ramping. Opt Lett, 2000, 25: 1246–1248

    Article  Google Scholar 

  32. Alfieri C G E, Waldburger D, Nürnberg J, et al. Mode-locking Instabilities for high-gain semiconductor disk lasers based on active submonolayer quantum dots. Phys Rev Appl, 2018, 10: 044015

    Article  Google Scholar 

  33. Broda A, Jezewski B, Sankowska I, et al. SWIR MECSEL emitting above 1600 nm. In: Proceedings of Vertical External Cavity Surface Emitting Lasers (VECSELs) X, 2020. 11263

  34. Pan G Z, Guan B L, Xu C, et al. Broad bandwidth interference filter-stabilized external cavity diode laser with narrow linewidth below 100 kHz. Chin Phys B, 2018, 27: 014204

    Article  Google Scholar 

  35. Zhang L B, Liu T, Chen L, et al. Development of an interference filter-stabilized external-cavity diode laser for space applications. Photonics, 2020, 7: 12

    Article  Google Scholar 

  36. Gu Y, Hu G Q, Wu X P, et al. Wavelength control technology for F-P cavity-based MEMS TOF. Study Opt Commun, 2009, 6: 45–47

    Google Scholar 

  37. Xiao X, Yu F Q. A novel wavelength tuning method in external cavity diode laser with all-dielectric thin film fabry-perot filte. In: Proceedings of Photonics & Optoelectronic, Chengdu, 2010

  38. Guillemot L, Oksenhendler T, Pelloquin S, et al. Guided-mode resonance filter extended-cavity diode laser. Laser Phys, 2020, 30: 035802

    Article  Google Scholar 

  39. Mizutani K, de Merlier J, Sudo S, et al. Liquid crystal mirror-based wavelength-tunable laser module with asynchronous mode cavity. IEEE Photon Technol Lett, 2006, 18: 1299–1301

    Article  Google Scholar 

  40. Dass D, Costas M T, Barry L P, et al. 28 GBd PAM-8 transmission over a 100 nm range using an InP-Si3N4 based integrated dual tunable laser module. Opt Express, 2021, 29: 16563–16571

    Article  Google Scholar 

  41. Chu T, Fujioka N, Ishizaka M. Compact, lower-power-consumption wavelength tunable laser fabricated with silicon photonic-wire waveguide micro-ring resonators. Opt Express, 2009, 17: 14063–14068

    Article  Google Scholar 

  42. Zhou Z, Yuan X, Gu M, et al. Design of double-ring resonator for tunable lasers on silicon. In: Proceedings of Optoelectronics and Micro/Nano-Optics, Beijing, 2017

  43. Guan H, Novack A, Galfsky T, et al. Widely-tunable, narrow-linewidth III-V/silicon hybrid external-cavity laser for coherent communication. Opt Express, 2018, 26: 7920–7933

    Article  Google Scholar 

  44. Lin Y, Fan Y, Boller K J, et al. Characterization of hybrid InP-TriPleX photonic integrated tunable lasers based on silicon nitride (Si3N4/SiO2) microring resonators for optical coherent system. IEEE Photonics J, 2018, 10: 1–8

    Google Scholar 

  45. Wang Y, Luo S, Ji H M, et al. Continuous-wave operation of InAs/InP quantum dot tunable external-cavity laser grown by metal-organic chemical vapor deposition. Chin Phys B, 2021, 30: 018106

    Article  Google Scholar 

  46. Jiang Y F, Vijayraghavan K, Jung S, et al. External cavity terahertz quantum cascade laser sources based on intra-cavity frequency mixing with 1.2–5.9 THz tuning range. J Opt, 2014, 16: 094002

    Article  Google Scholar 

  47. Vizbaras K, Dvinelis E, Simonyte I, et al. High power continuous-wave GaSb-based superluminescent diodes as gain chips for widely tunable laser spectroscopy in the 1.95–2.45 µm wavelength range. Appl Phys Lett, 2015, 107: 011103

    Article  Google Scholar 

  48. Fedorova K A, Gorodetsky A, Rafailov E U. Compact all-quantum-dot-based tunable THz laser source. IEEE J Sel Top Quantum Electron, 2017, 23: 1–5

    Article  Google Scholar 

  49. Hard T. Laser wavelength selector and output coupler. IEEE J Quantum Electron, 1969, 5: 321–321

    Article  Google Scholar 

  50. Chen M H, Hsiao S C, Shen K T, et al. Single longitudinal mode external cavity blue InGaN diode laser. Opt Laser Tech, 2019, 116: 68–71

    Article  Google Scholar 

  51. Shimada Y, Chida Y, Ohtsubo N, et al. A simplified 461-nm laser system using blue laser diodes and a hollow cathode lamp for laser cooling of Sr. Rev Sci Instrum, 2013, 84: 063101

    Article  Google Scholar 

  52. Ruhnke N, Muüller A, Eppich B, et al. 400 mW external cavity diode laser with narrowband emission at 445 nm. Opt Lett, 2014, 39: 3794–3797

    Article  Google Scholar 

  53. Chi M, Jensen O B, Petersen P M. Tuning range and output power optimization of an external-cavity GaN diode laser at 455 nm. Appl Opt, 2016, 55: 2263

    Article  Google Scholar 

  54. Tsai T, Wysocki G. External-cavity quantum cascade lasers with fast wavelength scanning. Appl Phys B, 2010, 100: 243–251

    Article  Google Scholar 

  55. Chi M J, Jensen O B, Petersen P M. High-power dual-wavelength external-cavity diode laser based on tapered amplifier with tunable terahertz frequency difference. Opt Lett, 2011, 36: 2626–2628

    Article  Google Scholar 

  56. Stry S, Zediker M S, Hildebrandt L, et al. Compact tunable diode laser with diffraction-limited 1 Watt for atom cooling and trapping. In: Proceedings of Conference on High-Power Diode Laser Technology and Applications II, San Jose, 2004. 17–25

  57. Giraud E, Demolon P, Gresch T, et al. Room-temperature continuous-wave external cavity interband cascade laser tunable from 3.2 to 3.6 µm. Opt Express, 2021, 29: 38291–38297

    Article  Google Scholar 

  58. Kruczek T, Fedorova K A, Sokolovskii G S, et al. InAs/AlSb widely tunable external cavity quantum cascade laser around 3.2 µm. Appl Phys Lett, 2013, 102: 011124

    Article  Google Scholar 

  59. Okamura H. Shift lens external-cavity diode laser for broad wavelength tuning and switching. Opt Lett, 2010, 35: 1175–1177

    Article  Google Scholar 

  60. Ding D, Lv X Q, Chen X Y, et al. Tunable high-power blue external cavity semiconductor laser. Opt Laser Tech, 2017, 94: 1–5

    Article  Google Scholar 

  61. He K, Wang J P, Hou Y Q, et al. High-spectral-resolution characterization of broadband high-efficiency reflection gratings. Appl Opt, 2013, 52: 653–658

    Article  Google Scholar 

  62. Al-Jalali S, El-Daher M S. Detection of multi absorption lines for CH4 using broadband laser beam modulation. J Opt, 2018, 47: 22–27

    Article  Google Scholar 

  63. Takei Y, Arai K, Yoshida H, et al. Development of an optical pressure measurement system using an external cavity diode laser with a wide tunable frequency range. Measurement, 2020, 151: 107090

    Article  Google Scholar 

  64. Masui S, Goda S, Kadoya S, et al. Grating periods measurement of multi-pitched grating using Littrow configuration external cavity diode laser. Appl Phys Express, 2021, 14: 076501

    Article  Google Scholar 

  65. Lv Q, Liu Z W, Wang W, et al. Simple and compact grating-based heterodyne interferometer with the Littrow configuration for high-accuracy and long-range measurement of two-dimensional displacement. Appl Opt, 2018, 57: 9455–9463

    Article  Google Scholar 

  66. Luo W, Duan C X. A broadband pulsed external-cavity quantum cascade laser operating near 6.9 µm. Chin Phys Lett, 2016, 33: 024207

    Article  Google Scholar 

  67. Jiménez A, Milde T, Staacke N, et al. Narrow-line external cavity diode laser micro-packaging in the NIR and MIR spectral range. Appl Phys B, 2017, 123: 207

    Article  Google Scholar 

  68. Chichkov N B, Yadav A, Zherebtsov E, et al. Wavelength-tunable, GaSb-based, cascaded type-I quantum-well laser emitting over a range of 300 nm. IEEE Photon Technol Lett, 2018, 30: 1941–1943

    Article  Google Scholar 

  69. Hoppe M, Rohling H, Schmidtmann S, et al. New wide tunable external cavity interband cascade laser based on a micro-electro-mechanical system device. In: Proceedings of Conference on MOEMS and Miniaturized Systems XVIII, San Francisco, 2019

  70. Fuh C N, Chen H C, Liang C P, et al. A tunable diode laser. In: Proceedings of Instrumentation & Measurement Technology Conference, Hamamatsu, 1994. 1089–1090

  71. Stry S, Thelen S, Sacher J, et al. Widely tunable diffraction limited 1000 mW external cavity diode laser in Littman/Metcalf configuration for cavity ring-down spectroscopy. Appl Phys B, 2006, 85: 365–374

    Article  Google Scholar 

  72. Wang W B, Major A, Paliwal J. Grating-stabilized external cavity diode lasers for raman spectroscopy — a review. Appl Spectr Rev, 2012, 47: 116–143

    Article  Google Scholar 

  73. Littman M G, Metcalf H J. Spectrally narrow pulsed dye laser without beam expander. Appl Opt, 1978, 17: 2224–2227

    Article  Google Scholar 

  74. Wu X J, Wei H Y, Zhang H Y, et al. Absolute distance measurement using frequency-sweeping heterodyne interferometer calibrated by an optical frequency comb. Appl Opt, 2013, 52: 2042

    Article  Google Scholar 

  75. Cabral A P. Calibration of the Fabry-Perot free spectral range using a tunable laser in a Michelson interferometer. Opt Eng, 2006, 45: 100501

    Article  Google Scholar 

  76. Gong H, Liu Z G, Zhou Y L, et al. Extending the mode-hop-free tuning range of an external-cavity diode laser by synchronous tuning with mode matching. Appl Opt, 2014, 53: 7878–7884

    Article  Google Scholar 

  77. Saliba S D, Junker M, Turner L D, et al. Mode stability of external cavity diode lasers. Appl Opt, 2009, 48: 6692

    Article  Google Scholar 

  78. Breguet J M, Henein S, Kjelberg I, et al. Tunable extended-cavity diode laser based on a novel flexure-mechanism. Int J Optomechatron, 2013, 7: 181–192

    Article  Google Scholar 

  79. Starovoitov V S, Kischkat J F, Semtsiv M P, et al. Intracavity photoacoustic sensing of water vapor with a continuously tunable external-cavity quantum-cascade laser operating near 5.5 µm. Opt Lett, 2016, 41: 4955–4958

    Article  Google Scholar 

  80. Lee S W, Song H W, Jung M Y, et al. Wide tuning range wavelength-swept laser with a single SOA at 1020 nm for ultrahigh resolution Fourier-domain optical coherence tomography. Opt Express, 2011, 19: 21227

    Article  Google Scholar 

  81. Sheng B, Chen G H, Huang Y S, et al. Measurement of grating groove density using multiple diffraction orders and one standard wavelength. Appl Opt, 2018, 57: 2514–2518

    Article  Google Scholar 

  82. Bernacki B E, Phillips M C. Standoff hyperspectral imaging of explosives residues using broadly tunable external cavity quantum cascade laser illumination. In: Proceedings of Conference on Chemical, Biological, Radiological, Nuclear, and Explosives (CBRNE) Sensing XI, Orlando, 2010

  83. Broda A, Wojcik-Jedlinska A, Sankowska I, et al. A 95-nm-wide tunable two-mode vertical external cavity surface-emitting laser. IEEE Photon Technol Lett, 2017, 29: 2215–2218

    Article  Google Scholar 

  84. Kuznetsov M, Atia W, Johnson B, et al. Compact ultrafast reflective fabry-perot tunable lasers for OCT imaging applications. In: Proceedings of Conference on Optical Coherence Tomography and Coherence Domain Optical Methods in Biomedicine XIV, San Francisco, 2010

  85. Choi K, Menders J, Searcy P, et al. Optical feedback locking of a diode laser using a cesium Faraday filter. Opt Commun, 1993, 96: 240–244

    Article  Google Scholar 

  86. Thompson D J, Scholten R E. Narrow linewidth tunable external cavity diode laser using wide bandwidth filter. Rev Sci Instrum, 2012, 83: 023107

    Article  Google Scholar 

  87. Kasai K, Nakazawa M, Tomomatsu Y, et al. 15 µm, mode-hop-free full C-band wavelength tunable laser diode with a linewidth of 8 kHz and a RIN of-130 dB/Hz and its extension to the L-band. Opt Express, 2017, 25: 22113–22124

    Article  Google Scholar 

  88. Kuznetsov M. VECSEL semiconductor lasers: a path to high-power, quality beam and UV to IR wavelength by design. In: Semiconductor Disk Lasers: Physics and Technology. Weinheim: Wiley, 2010. 16–33

    Google Scholar 

  89. Lai Y H, Eliyahu D, Ganji S, et al. 780 nm narrow-linewidth self-injection-locked WGM lasers. In: Proceedings of Conference on Laser Resonators, Microresonators, and Beam Control XXII, San Francisco, 2020

  90. Priante D, Zhang M, Albrecht A R, et al. In-well pumping of a membrane external-cavity surface-emitting laser. IEEE J Sel Top Quantum Electron, 2022, 28: 1–7

    Article  Google Scholar 

  91. Huang Y Z, Ma X W, Yang Y D, et al. Hybrid-cavity semiconductor lasers with a whispering-gallery cavity for controlling Q factor. Sci China Inf Sci, 2018, 61: 080401

    Article  MathSciNet  Google Scholar 

  92. Iwata Y, Cheon D, Miyabe M, et al. Development of an interference-filter-type external-cavity diode laser for resonance ionization spectroscopy of strontium. Rev Sci Instrum, 2019, 90: 123002

    Article  Google Scholar 

  93. Tran M A, Huang D N, Guo J, et al. Ring-resonator based widely-tunable narrow-linewidth Si/InP integrated lasers. IEEE J Sel Top Quantum Electron, 2020, 26: 1–14

    Article  Google Scholar 

  94. Hagness S C, Rafizadeh D, Ho S T, et al. FDTD microcavity simulations: design and experimental realization of waveguide-coupled single-mode ring and whispering-gallery-mode disk resonators. J Lightwave Technol, 1997, 15: 2154–2165

    Article  Google Scholar 

  95. Yoon K H, Kwon O K, Kim K S, et al. Ring-resonator-integrated tunable external cavity laser employing EAM and SOA. Opt Express, 2011, 19: 25465–25470

    Article  Google Scholar 

  96. Xiang C, Guo J, Jin W, et al. High-performance lasers for fully integrated silicon nitride photonics. Nat Commun, 2021, 12: 6650

    Article  Google Scholar 

  97. Kim S H, Byun Y T, Kim D G, et al. Widely tunable coupled-ring reflector laser diode consisting of square ring resonators. J Opt Soc Korea, 2010, 14: 38–41

    Article  Google Scholar 

  98. Takeuchi T, Takahashi M, Suzuki K, et al. Wavelength tunable laser with silica-waveguide ring resonators. IEICE Trans Electron, 2009, 92: 198–204

    Article  Google Scholar 

  99. Ishizaka M, Yamazaki H. Wavelength tunable laser using silica double ring resonators. Electron Comm Jpn Pt II, 2006, 89: 34–41

    Article  Google Scholar 

  100. Radosavljevic S, Beneitez N T, Katumba A, et al. Mid-infrared Vernier racetrack resonator tunable filter implemented on a germanium on SOI waveguide platform. Opt Mater Express, 2018, 8: 824–835

    Article  Google Scholar 

  101. Srinivasan S, Davenport M, Komljenovic T, et al. Coupled-ring-resonator-mirror-based heterogeneous III–V silicon tunable laser. IEEE Photon J, 2015, 7: 1–8

    Article  Google Scholar 

  102. Deki Y, Hatanaka T, Takahashi M, et al. Wide-wavelength tunable lasers with 100 GHz FSR ring resonators. Electron Lett, 2007, 43: 225–226

    Article  Google Scholar 

  103. Segawa T, Matsuo S, Kakitsuka T, et al. Full C-band tuning operation of semiconductor double-ring resonator-coupled laser with low tuning current. IEEE Photon Technol Lett, 2007, 19: 1322–1324

    Article  Google Scholar 

  104. Matsuo S, Segawa T. Microring-resonator-based widely tunable lasers. IEEE J Sel Top Quantum Electron, 2009, 15: 545–554

    Article  Google Scholar 

  105. Oldenbeuving R M, Klein E J, Offerhaus H L, et al. 25 kHz narrow spectral bandwidth of a wavelength tunable diode laser with a short waveguide-based external cavity. Laser Phys Lett, 2013, 10: 015804

    Article  Google Scholar 

  106. Hulme J C, Doylend J K, Bowers J E. Widely tunable Vernier ring laser on hybrid silicon. Opt Express, 2013, 21: 19718

    Article  Google Scholar 

  107. Xiang C, Jin W, Guo J, et al. Effects of nonlinear loss in high-Q Si ring resonators for narrow-linewidth III–V/Si heterogeneously integrated tunable lasers. Opt Express, 2020, 28: 19926

    Article  Google Scholar 

  108. Morton P A, Xiang C, Khurgin J B, et al. Integrated coherent tunable laser (ICTL) with ultra-wideband wavelength tuning and sub-100 Hz lorentzian linewidth. J Lightwave Technol, 2022, 40: 1802–1809

    Article  Google Scholar 

  109. Chao R L, Liang L, Shi J W, et al. Fully integrated photonic millimeter-wave tracking generators on the heterogeneous III–V/Si platform. IEEE Photon Technol Lett, 2018, 30: 919–922

    Article  Google Scholar 

  110. Kim K J, Kim J W, Oh M C, et al. Flexible polymer waveguide tunable lasers. Opt Express, 2010, 18: 8392–8399

    Article  Google Scholar 

  111. Xiang C, Morton P A, Bowers J E. Ultra-narrow linewidth laser based on a semiconductor gain chip and extended Si3N4 Bragg grating. Opt Lett, 2019, 44: 3825–3828

    Article  Google Scholar 

  112. Park T H, Kim S M, Oh M C. Polymeric tunable wavelength filter with two-stage cascaded tilted Bragg gratings. Opt Express, 2020, 28: 10145–10152

    Article  Google Scholar 

  113. Luo X C, Chen C, Ning Y Q, et al. High linear polarization, narrow linewidth hybrid semiconductor laser with an external birefringence waveguide Bragg grating. Opt Express, 2021, 29: 33109–33120

    Article  Google Scholar 

  114. Sun G W, Wei F, Zhang L, et al. Low-noise external cavity semiconductor lasers based on polarization-maintaining fiber bragg gratings. Chin J Laser, 2018, 45: 0601004

    Article  Google Scholar 

  115. Zhang L, Wei F, Sun G W, et al. Thermal tunable narrow linewidth external cavity laser with thermal enhanced FBG. IEEE Photon Technol Lett, 2017, 29: 385–388

    Article  Google Scholar 

  116. Yang X, Lindberg R, Margulis W, et al. Continuously tunable, narrow-linewidth laser based on a semiconductor optical amplifier and a linearly chirped fiber Bragg grating. Opt Express, 2019, 27: 14213–14220

    Article  Google Scholar 

  117. Congar A, Gay M, Perin G, et al. Narrow linewidth near-UV InGaN laser diode based on external cavity fiber Bragg grating. Opt Lett, 2021, 46: 1077–1080

    Article  Google Scholar 

  118. Brinkmeyer E, Brennecke W, Zurn M, et al. Fibre Bragg reflector for mode selection and line-narrowing of injection lasers. Electron Lett, 1986, 22: 134–135

    Article  Google Scholar 

  119. Loh W, O’Donnell F J, Plant J J, et al. Packaged, high-power, narrow-linewidth slab-coupled optical waveguide external cavity laser (SCOWECL). IEEE Photon Technol Lett, 2011, 23: 974–976

    Article  Google Scholar 

  120. Duraev V P, Medvedev S V. Single-frequency tunable semiconductor lasers. Semiconductors, 2014, 48: 120–122

    Article  Google Scholar 

  121. Wei F, Yang F, Zhang X, et al. Subkilohertz linewidth reduction of a DFB diode laser using self-injection locking with a fiber Bragg grating Fabry-Perot cavity. Opt Express, 2016, 24: 17406–17415

    Article  Google Scholar 

  122. Gao S, Luo M, Jing Z G, et al. A tunable dual-wavelength fiber ring-cavity laser based on a FBG and DFB laser injection. Optik, 2020, 203: 163961

    Article  Google Scholar 

  123. Gao S, Jing Z G, Chen H Y. A stable triple-wavelength semiconductor optical amplifier ring-cavity laser with two seed DFB lasers and a fiber Bragg grating. Optik, 2021, 238: 166725

    Article  Google Scholar 

  124. Lindberg R, Laurell F, Fröjdh K, et al. C-cavity fiber laser employing a chirped fiber Bragg grating for electrically gated wavelength tuning. Opt Express, 2020, 28: 9208–9215

    Article  Google Scholar 

  125. Muller M S, Hoffmann L, Bodendorfer T, et al. Fiber-optic sensor interrogation based on a widely tunable monolithic laser diode. IEEE Trans Instrum Meas, 2010, 59: 696–703

    Article  Google Scholar 

  126. Toet P M, Hagen R A J, Hakkesteegt H C, et al. Miniature and low cost fiber bragg grating interrogator for structural monitoring in nano-satellites. In: Proceedings of International Conference on Space Optics, 2014

  127. You X H, Wang C X, Huang J, et al. Towards 6G wireless communication networks: vision, enabling technologies, and new paradigm shifts. Sci China Inf Sci, 2021, 64: 110301

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by National Science and Technology Major Project of China (Grant Nos. 2018YFB-0504600, 2018YFB0504603), National Natural Science Foundation of China (Grant Nos. 62090051, 62090052, 62090054, 11874353, 61935009, 61934003, 61904179, 61727822, 61805236, 62004194), Science and Technology Development Project of Jilin Province (Grant Nos. 20200401069GX, 20200401062GX, 20200501006GX, 20200501007GX, 20200501008GX), Key R&D Program of Changchun (Grant No. 21ZGG13), Special Scientific Research Project of Academician Innovation Platform in Hainan Province (Grant No. YSPTZX202034), and “Lingyan” Research Program of Zhejiang Province (Grant No. 2022C01108).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yuxin Lei, Yongyi Chen or Lijun Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cui, Q., Lei, Y., Chen, Y. et al. Advances in wide-tuning and narrow-linewidth external-cavity diode lasers. Sci. China Inf. Sci. 65, 181401 (2022). https://doi.org/10.1007/s11432-021-3454-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11432-021-3454-7

Keywords

Navigation