Skip to main content

Advertisement

Log in

Efficient charge transfer in WS2/WxMo1−xS2 heterostructure empowered by energy level hybridization

  • Research Paper
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

Photoinduced charge transfer (CT) is decisive to the efficiency and speed of photoelectric conversion in two-dimensional (2D) van der Waals (vdWs) heterostructures. Generally, CT rate enhancement is realized by increasing the band offset (BO). In this study, we propose that a fast and efficient CT can be realized via strong hybridization of energy levels in 2D vdWs heterostructures with minimal BO. First-principles calculations reveal that the smallest energy difference between conduction-band edges and minimal BO in the WS2/WxMo1−xS2 (x = 0.78) heterostructure yields the strong hybridization of energy levels and then results in ultrafast CT (2.7 ps). Experimental results agree with theoretical calculations. The photoluminescence of WS2 is quenched in the WS2/WxMo1−xS2 (x = 0.78) heterostructure, attributable to the strong hybridization-induced fast and efficient CT. This study provides insights into the mechanism of CT in heterostructures and offers new strategies to create superior optoelectronic devices with fast and efficient photoelectric conversion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Deng Y, Luo Z, Conrad N J, et al. Black phosphorus-monolayer MoS2 van der Waals heterojunction p−n diode. ACS Nano, 2014, 8: 8292–8299

    Article  Google Scholar 

  2. Liu X, Wang W H, Yang F, et al. Bi2O2Se/BP van der Waals heterojunction for high performance broadband photodetector. Sci China Inf Sci, 2021, 64: 140404

    Article  Google Scholar 

  3. Gong F, Luo W, Wang J, et al. High-sensitivity floating-gate phototransistors based on WS2 and MoS2. Adv Funct Mater, 2016, 26: 6084–6090

    Article  Google Scholar 

  4. Lee I, Rathi S, Lim D, et al. Gate-tunable hole and electron carrier transport in atomically thin dual-channel WSe2/MoS2 heterostructure for ambipolar field-effect transistors. Adv Mater, 2016, 28: 9519–9525

    Article  Google Scholar 

  5. Lee K H, Kim T H, Shin H J, et al. Highly efficient photocurrent generation from nanocrystalline graphene-molybdenum disulfide lateral interfaces. Adv Mater, 2016, 28: 1793–1798

    Article  Google Scholar 

  6. Roy T, Tosun M, Cao X, et al. Dual-Gated MoS2/WSe2 van der Waals tunnel diodes and transistors. ACS Nano, 2015, 9: 2071–2079

    Article  Google Scholar 

  7. Zhang K, Zhang T, Cheng G, et al. Interlayer transition and infrared photodetection in atomically thin type-II MoTe2/MoS2 van der Waals heterostructures. ACS Nano, 2016, 10: 3852–3858

    Article  Google Scholar 

  8. Bai S, Jiang J, Zhang Q, et al. Steering charge kinetics in photocatalysis: intersection of materials syntheses, characterization techniques and theoretical simulations. Chem Soc Rev, 2015, 44: 2893–2939

    Article  Google Scholar 

  9. Liu J, Chen S, Qian D, et al. Fast charge separation in a non-fullerene organic solar cell with a small driving force. Nat Energy, 2016, 1: 16089

    Article  Google Scholar 

  10. Eisner F D, Azzouzi M, Fei Z, et al. Hybridization of local exciton and charge-transfer states reduces nonradiative voltage losses in organic solar cells. J Am Chem Soc, 2019, 141: 6362–6374

    Article  Google Scholar 

  11. Tongay S, Fan W, Kang J, et al. Tuning interlayer coupling in large-area heterostructures with CVD-grown MoS2 and WS2 monolayers. Nano Lett, 2014, 14: 3185–3190

    Article  Google Scholar 

  12. Zhang J, Hong H, Lian C, et al. Interlayer-state-coupling dependent ultrafast charge transfer in MoS2/WS2 bilayers. Adv Sci, 2017, 4: 1700086

    Article  Google Scholar 

  13. Alexeev E M, Ruiz-Tijerina D A, Danovich M, et al. Resonantly hybridized excitons in moiré superlattices in van der Waals heterostructures. Nature, 2019, 567: 81–86

    Article  Google Scholar 

  14. Sih G C. Electron cloud overlap related to specific energy threshold and breakdown at high temperature, short time and nano distance. Theor Appl Fract Mech, 2008, 50: 173–183

    Article  Google Scholar 

  15. Louro P, Vieira M, Vygranenko Y, et al. Transport mechanism in high resistive silicon carbide heterostructures. Appl Surf Sci, 2001, 184: 144–149

    Article  Google Scholar 

  16. van Hove M, Pereira R, de Raedt W, et al. Zero-dimensional states in submicron double-barrier heterostructures laterally constricted by hydrogen plasma isolation. J Appl Phys, 1992, 72: 158–160

    Article  Google Scholar 

  17. Liu Y, Weiss N O, Duan X, et al. Van der Waals heterostructures and devices. Nat Rev Mater, 2016, 1: 16042

    Article  Google Scholar 

  18. Yi Y, Coropceanu V, Brédas J L. A comparative theoretical study of exciton-dissociation and charge-recombination processes in oligothiophene/fullerene and oligothiophene/perylenediimide complexes for organic solar cells. J Mater Chem, 2011, 21: 1479

    Article  Google Scholar 

  19. Kawatsu T, Coropceanu V, Ye A, et al. Quantum-chemical approach to electronic coupling: application to charge separation and charge recombination pathways in a model molecular donor-acceptor system for organic solar cells. J Phys Chem C, 2008, 112: 3429–3433

    Article  Google Scholar 

  20. Chuang C H, Doane T L, Lo S S, et al. Measuring electron and hole transfer in core/shell nanoheterostructures. ACS Nano, 2011, 5: 6016–6024

    Article  Google Scholar 

  21. Scholes G D, Jones M, Kumar S. Energetics of photoinduced electron-transfer reactions decided by quantum confinement. J Phys Chem C, 2007, 111: 13777–13785

    Article  Google Scholar 

  22. Komsa H P, Krasheninnikov A V. Two-dimensional transition metal dichalcogenide alloys: stability and electronic properties. J Phys Chem Lett, 2012, 3: 3652–3656

    Article  Google Scholar 

  23. Kang J, Tongay S, Li J, et al. Monolayer semiconducting transition metal dichalcogenide alloys: stability and band bowing. J Appl Phys, 2013, 113: 143703

    Article  Google Scholar 

  24. Xi J, Zhao T, Wang D, et al. Tunable electronic properties of two-dimensional transition metal dichalcogenide alloys: a first-principles prediction. J Phys Chem Lett, 2013, 5: 285–291

    Article  Google Scholar 

  25. Zhang W, Li X, Jiang T, et al. CVD synthesis of Mo(1−x)WxS2 and MoS2(1−x)Se2x alloy monolayers aimed at tuning the bandgap of molybdenum disulfide. Nanoscale, 2015, 7: 13554–13560

    Article  Google Scholar 

  26. Wang Z, Liu P, Ito Y, et al. Chemical vapor deposition of monolayer Mo1−xWxS2 crystals with tunable band gaps. Sci Rep, 2016, 6: 21536

    Article  Google Scholar 

  27. Liu X, Wu J, Yu W, et al. Monolayer WxMo1−xS2 grown by atmospheric pressure chemical vapor deposition: bandgap engineering and field effect transistors. Adv Funct Mater, 2017, 27: 1606469

    Article  Google Scholar 

  28. Gong C, Zhang H, Wang W, et al. Band alignment of two-dimensional transition metal dichalcogenides: application in tunnel field effect transistors. Appl Phys Lett, 2013, 103: 053513

    Article  Google Scholar 

  29. Kang J, Tongay S, Zhou J, et al. Band offsets and heterostructures of two-dimensional semiconductors. Appl Phys Lett, 2013, 102: 012111

    Article  Google Scholar 

  30. Taube H. Electron transfer between metal complexes—a retrospective view (nobel lecture). Angew Chem Int Ed Engl, 1984, 23: 329–339

    Article  Google Scholar 

  31. Sutin N. Theory of electron transfer reactions: insights and hindsights. In: Progress in Inorganic Chemistry: An appreciation of Henry Taube. Hoboken: John Wiley & Sons, Inc., 1983. 441–498

    Chapter  Google Scholar 

  32. Taube H. Electronic coupling mechanisms in mixed-valence molecules. Ann NY Acad Sci, 1978, 313: 481–495

    Article  Google Scholar 

  33. Carraway E R, Demas J N, DeGraff B A. Luminescence quenching mechanism for microheterogeneous systems. Anal Chem, 1991, 63: 332–336

    Article  Google Scholar 

  34. Sariciftci N S, Smilowitz L, Heeger A J, et al. Photoinduced electron transfer from a conducting polymer to buckminster-fullerene. Science, 1992, 258: 1474–1476

    Article  Google Scholar 

  35. Wang J, Wang D, Miller E K, et al. Photoluminescence of water-soluble conjugated polymers: origin of enhanced quenching by charge transfer. Macromolecules, 2000, 33: 5153–5158

    Article  Google Scholar 

  36. Merkl J P, Wolter C, Flessau S, et al. Investigations of ion transport through nanoscale polymer membranes by fluorescence quenching of CdSe/CdS quantum dot/quantum rods. Nanoscale, 2016, 8: 7402–7407

    Article  Google Scholar 

  37. Ji Z, Hong H, Zhang J, et al. Robust stacking-independent ultrafast charge transfer in MoS2/WS2 bilayers. ACS Nano, 2017, 11: 12020–12026

    Article  MathSciNet  Google Scholar 

  38. Yu Y, Hu S, Su L, et al. Equally efficient interlayer exciton relaxation and improved absorption in epitaxial and nonepitaxial MoS2/WS2 heterostructures. Nano Lett, 2015, 15: 486–491

    Article  Google Scholar 

  39. Yang R, Zheng X, Wang Z, et al. Multilayer MoS2 transistors enabled by a facile dry-transfer technique and thermal annealing. J Vac Sci Technol B, 2014, 32: 061203

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by National Key Research and Development Program of China (Grant Nos. 2019YFA0308000, 2017YFA0205700, 2017YFA0204800), National Natural Science Foundation of China (Grant Nos. 61927808, 61774034, 21525311, 91963130, 62174026), Jiangsu Province Basic Research Plan (Grant No. BK20170694), Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDB30000000), and Fundamental Research Funds for the Central Universities.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Junpeng Lu, Jinlan Wang or Zhenhua Ni.

Additional information

Supporting information

Appendix A. The supporting information is available online at info.scichina.com and link.springer.com. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

An, X., Zhang, Y., Yu, Y. et al. Efficient charge transfer in WS2/WxMo1−xS2 heterostructure empowered by energy level hybridization. Sci. China Inf. Sci. 66, 122404 (2023). https://doi.org/10.1007/s11432-022-3465-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11432-022-3465-2

Keywords