Skip to main content
Log in

1.7 kV normally-off p-GaN gate high-electron-mobility transistors on a semi-insulating SiC substrate

  • Research Paper
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

A study of 1.7 kV normally-off p-GaN gate high-electron-mobility transistors (HEMTs) on SiC substrates is presented. The fabricated p-GaN HEMT with a gate-drain spacing LGD = 5 µm exhibited a threshold voltage of 1.10 V, a maximum drain current of 235 mA/mm, an ON/OFF ratio of 108, and a breakdown voltage of 440 V. Benefiting from the semi-insulating and high-critical-electric-field substrate, the p-GaN HEMT with LGD = 23 µm achieved the remarkably high breakdown voltage of 1740 V with substrate grounded. This breakdown voltage is very high compared with the reported values for p-GaN HEMTs on silicon substrates with substrate grounded. The vertical breakdown voltage for the p-GaN-on-SiC material exceeded 3 kV with substrate grounded. In addition, the maximum drain current at 500 K was 48% of that at 300 K with a negligible threshold voltage shift. These results indicate the substantial potential of p-GaN gate HEMTs on SiC substrates for high-voltage power applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mishra U K, Parikh P, Wu Y F. AlGaN/GaN HEMTs — an overview of device operation and applications. Proc IEEE, 2002, 90: 1022–1031

    Article  Google Scholar 

  2. Chen K J, Haberlen O, Lidow A, et al. GaN-on-Si power technology: devices and applications. IEEE Trans Electron Dev, 2017, 64: 779–795

    Article  Google Scholar 

  3. Xing H, Dora Y, Chini A, et al. High breakdown voltage AlGaN-GaN HEMTs achieved by multiple field plates. IEEE Electron Dev Lett, 2004, 25: 161–163

    Article  Google Scholar 

  4. Xiao M, Du Z, Xie J, et al. Lateral p-GaN/2DEG junction diodes by selective-area p-GaN trench-filling-regrowth in AlGaN/GaN. Appl Phys Lett, 2020, 116: 053503

    Article  Google Scholar 

  5. Uemoto Y, Hikita M, Ueno H, et al. Gate injection transistor (GIT) — a normally-off AlGaN/GaN power transistor using conductivity modulation. IEEE Trans Electron Dev, 2007, 54: 3393–3399

    Article  Google Scholar 

  6. Wang H, Wei J, Xie R, et al. Maximizing the performance of 650-V p-GaN gate HEMTs: dynamic RON characterization and circuit design considerations. IEEE Trans Power Electron, 2017, 32: 5539–5549

    Article  Google Scholar 

  7. Huang X, Liu Z, Li Q, et al. Evaluation and application of 600 V GaN HEMT in cascode structure. IEEE Trans Power Electron, 2014, 29: 2453–2461

    Article  Google Scholar 

  8. Tao M, Liu S, Xie B, et al. Characterization of 880 V normally off GaN MOSHEMT on silicon substrate fabricated with a plasma-free, self-terminated gate recess process. IEEE Trans Electron Dev, 2018, 65: 1453–1457

    Article  Google Scholar 

  9. Wu Y, Zhang W, Zhang J, et al. Au-free Al0.4Ga0.6N/Al0.1Ga0.9 N HEMTs on silicon substrate with high reverse blocking voltage of 2 kV. IEEE Trans Electron Dev, 2021, 68: 4543–4549

    Article  Google Scholar 

  10. Cheng K, Liang H, van Hove M, et al. AlGaN/GaN/AlGaN double heterostructures grown on 200 mm silicon (111) substrates with high electron mobility. Appl Phys Express, 2012, 5: 011002

    Article  Google Scholar 

  11. Rowena I B, Selvaraj S L, Egawa T. Buffer thickness contribution to suppress vertical leakage current with high breakdown field (2.3 MV/cm) for GaN on Si. IEEE Electron Dev Lett, 2011, 32: 1534–1536

    Article  Google Scholar 

  12. Tanaka K, Morita T, Umeda H, et al. Suppression of current collapse by hole injection from drain in a normally-off GaN-based hybrid-drain-embedded gate injection transistor. Appl Phys Lett, 2015, 107: 163502

    Article  Google Scholar 

  13. Jiang H, Lyu Q, Zhu R, et al. 1300 V normally-off p-GaN gate HEMTs on Si with high on-state drain current. IEEE Trans Electron Dev, 2021, 68: 653–657

    Article  Google Scholar 

  14. Lu W, Yang J W, Khan M A, et al. AlGaN/GaN HEMTs on SiC with over 100 GHz f/sub T/and low microwave noise. IEEE Trans Electron Dev, 2001, 48: 581–585

    Article  Google Scholar 

  15. Wu Y F, Saxler A, Moore M, et al. 30-W/mm GaN HEMTs by field plate optimization. IEEE Electron Dev Lett, 2004, 25: 117–119

    Article  Google Scholar 

  16. Lee D S, Gao X, Guo S, et al. 300-GHz InAlN/GaN HEMTs with InGaN back barrier. IEEE Electron Dev Lett, 2011, 32: 1525–1527

    Article  Google Scholar 

  17. Feng Y, Sun H, Yang X, et al. High quality GaN-on-SiC with low thermal boundary resistance by employing an ultrathin AlGaN buffer layer. Appl Phys Lett, 2021, 118: 052104

    Article  Google Scholar 

  18. Greco G, Iucolano F, Roccaforte F. Review of technology for normally-off HEMTs with p-GaN gate. Mater Sci Semicon Proc, 2018, 78: 96–106

    Article  Google Scholar 

  19. Zhong Y, Sun Q, Yang H, et al. Normally-off HEMTs with regrown p-GaN gate and low-pressure chemical vapor deposition SiNx passivation by using an AlN pre-layer. IEEE Electron Dev Lett, 2019, 40: 1495–1498

    Article  Google Scholar 

  20. Zhang L, Zhou H, Zhang W, et al. AlGaN-channel gate injection transistor on silicon substrate with adjustable 4–7-V threshold voltage and 1.3-kV breakdown voltage. IEEE Electron Dev Lett, 2018, 39: 1026–1029

    Article  Google Scholar 

  21. Chen J, Hua M, Wang C, et al. Decoupling of forward and reverse turn-on threshold voltages in schottky-type p-GaN gate HEMTs. IEEE Electron Dev Lett, 2021, 42: 986–989

    Article  Google Scholar 

  22. Hwang I, Oh J, Choi H S, et al. Source-connected p-GaN gate HEMTs for increased threshold voltage. IEEE Electron Dev Lett, 2013, 34: 605–607

    Article  Google Scholar 

  23. Hwang I, Kim J, Choi H S, et al. p-GaN gate HEMTs with tungsten gate metal for high threshold voltage and low gate current. IEEE Electron Dev Lett, 2013, 34: 202–204

    Article  Google Scholar 

  24. Zhang C, Li S, Liu S, et al. Electrical performances and physics based analysis of 650V E-mode GaN devices at high temperatures. In: Proceedings of the 26th International Symposium on Physical and Failure Analysis of Integrated Circuits (IPFA), Hangzhou, 2019

  25. Hao R, Fu K, Yu G, et al. Normally-off p-GaN/AlGaN/GaN high electron mobility transistors using hydrogen plasma treatment. Appl Phys Lett, 2016, 109: 152106

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported in part by National Science Fund for Distinguished Young Scholars (Grant No. 61925404), National Natural Science Foundation of China (Grant No. 62074122), Fundamental Research Plan (Grant No. JCKY2020110B010), and Major Projects of Shanxi Province (Grant No. 20201102012).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jincheng Zhang, Yachao Zhang or Lansheng Feng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, S., Zhang, J., Zhang, Y. et al. 1.7 kV normally-off p-GaN gate high-electron-mobility transistors on a semi-insulating SiC substrate. Sci. China Inf. Sci. 66, 122407 (2023). https://doi.org/10.1007/s11432-022-3475-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11432-022-3475-9

Keywords

Navigation