Skip to main content
Log in

Polarization-insensitive quantum key distribution using planar lightwave circuit chips

  • Research Paper
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

Self-stabilizing the quantum key distribution (QKD) system is essential to evaluate eavesdroppers’ information accurately. We develop and verify a polarization-insensitive time-bin decoder chip for QKD with the hybrid asymmetric Faraday-Michelson interferometer (AFMI) based on the planar lightwave circuit (PLC). Compared with existing chip-based QKD works, the scheme can intrinsically compensate for the polarization perturbation to quantum signals and thus work at arbitrary temperatures. We experimentally verify the chips in a time-bin QKD system at the clocking rate of 1.25 GHz and obtain an average secure key rate (SKR) of 1.34 Mbps over a 50 km fiber channel with an optimized analysis model. The steady variations of the quantum bit error and SKR with random polarization disturbance demonstrate that PLC-based AFMIs are available for developing self-stable QKD systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gisin N, Ribordy G, Tittel W, et al. Quantum cryptography. Rev Mod Phys, 2002, 74: 145–195

    Article  MATH  Google Scholar 

  2. Bennett C H, Brassard G. Quantum cryptography: public key distribution and coin tossing. In: Proceedings of International Conference on Computers, Systems & Signal Processing, 1984. 175–179

  3. Bennett C H, Bessette F, Brassard G, et al. Experimental quantum cryptography. J Cryptology, 1992, 5: 3–28

    Article  MATH  Google Scholar 

  4. Li L L, Li J, Chang Y, et al. Quantum key distribution based on single-particle and EPR entanglement. Sci China Inf Sci, 2020, 63: 169501

    Article  Google Scholar 

  5. Yang Y G, Yang J J, Zhou Y H, et al. Quantum network communication: a discrete-time quantum-walk approach. Sci China Inf Sci, 2018, 61: 042501

    Article  MathSciNet  Google Scholar 

  6. Xu F, Ma X, Zhang Q, et al. Secure quantum key distribution with realistic devices. Rev Mod Phys, 2020, 92: 025002

    Article  MathSciNet  Google Scholar 

  7. Ding Y Y, Chen H, Wang S, et al. Polarization variations in installed fibers and their influence on quantum key distribution systems. Opt Express, 2017, 25: 27923–27936

    Article  Google Scholar 

  8. Dixon A R, Dynes J F, Lucamarini M, et al. High speed prototype quantum key distribution system and long term field trial. Opt Express, 2015, 23: 7583–7592

    Article  Google Scholar 

  9. Ding Y Y, Chen W, Chen H, et al. Polarization-basis tracking scheme for quantum key distribution using revealed sifted key bits. Opt Lett, 2017, 42: 1023–1026

    Article  Google Scholar 

  10. Zbinden H, Gautier J D, Gisin N, et al. Interferometry with Faraday mirrors for quantum cryptography. Electron Lett, 1997, 33: 586–588

    Article  Google Scholar 

  11. Wang S, Chen W, Yin Z Q, et al. Field and long-term demonstration of a wide area quantum key distribution network. Opt Express, 2014, 22: 21739–21756

    Article  Google Scholar 

  12. Sibson P, Kennard J E, Stanisic S, et al. Integrated silicon photonics for high-speed quantum key distribution. Optica, 2017, 4: 172

    Article  Google Scholar 

  13. Geng W, Zhang C, Zheng Y L, et al. Stable quantum key distribution using a silicon photonic transceiver. Opt Express, 2019, 27: 29045

    Article  Google Scholar 

  14. Sibson P, Erven C, Godfrey M, et al. Chip-based quantum key distribution. Nat Commun, 2017, 8: 13984

    Article  Google Scholar 

  15. Semenenko H, Sibson P, Hart A, et al. Chip-based measurement-device-independent quantum key distribution. Optica, 2020, 7: 238

    Article  Google Scholar 

  16. Honjo T, Inoue K, Takahashi H. Differential-phase-shift quantum key distribution experiment with a planar light-wave circuit Mach-Zehnder interferometer. Opt Lett, 2004, 29: 2797–2799

    Article  Google Scholar 

  17. Choe J S, Ko H, Choi B S, et al. Silica planar lightwave circuit based integrated 1 × 4 polarization beam splitter module for free-space BB84 quantum key distribution. IEEE Photon J, 2018, 10: 1–8

    Article  Google Scholar 

  18. Takesue H, Sasaki T, Tamaki K, et al. Experimental quantum key distribution without monitoring signal disturbance. Nat Photon, 2015, 9: 827–831

    Article  Google Scholar 

  19. Nambu Y, Yoshino K, Tomita A. Quantum encoder and decoder for practical quantum key distribution using a planar lightwave circuit. J Modern Opt, 2008, 55: 1953–1970

    Article  Google Scholar 

  20. Li X, Ren M Z, Zhang J S, et al. Interference at the single-photon level based on silica photonics robust against channel disturbance. Photon Res, 2021, 9: 222–228

    Article  Google Scholar 

  21. Zhang G W, Ding Y Y, Chen W, et al. Polarization-insensitive interferometer based on a hybrid integrated planar light-wave circuit. Photon Res, 2021, 9: 2176–2181

    Article  Google Scholar 

  22. Rusca D, Boaron A, Grünenfelder F, et al. Finite-key analysis for the 1-decoy state QKD protocol. Appl Phys Lett, 2018, 112: 171104

    Article  Google Scholar 

  23. Brassard G, Lütkenhaus N, Mor T, et al. Limitations on practical quantum cryptography. Phys Rev Lett, 2000, 85: 1330–1333

    Article  MATH  Google Scholar 

  24. Roberts G L, Pittaluga M, Minder M, et al. Patterning-effect mitigating intensity modulator for secure decoy-state quantum key distribution. Opt Lett, 2018, 43: 5110

    Article  Google Scholar 

  25. Boaron A, Korzh B, Houlmann R, et al. Simple 2.5 GHz time-bin quantum key distribution. Appl Phys Lett, 2018, 112: 171108

    Article  Google Scholar 

  26. Fan-Yuan G J, Wang C, Wang S, et al. Afterpulse analysis for quantum key distribution. Phys Rev Appl, 2018, 10: 064032

    Article  Google Scholar 

  27. Wang F X, Chen W, Li Y P, et al. Non-Markovian property of afterpulsing effect in single-photon avalanche detector. J Lightwave Technol, 2016, 34: 3610–3615

    Article  Google Scholar 

  28. Fan-Yuan G J, Wang S, Yin Z Q, et al. Modeling alignment error in quantum key distribution based on a weak coherent source. Phys Rev Appl, 2019, 12: 064044

    Article  Google Scholar 

  29. Chen W, Han Z F, Mo X F, et al. Active phase compensation of quantum key distribution system. Sci Bull, 2008, 53: 1310–1314

    Article  Google Scholar 

  30. Zhang L J, Wang Y G, Yin Z Q, et al. Real-time compensation of phase drift for phase-encoded quantum key distribution systems. Chin Sci Bull, 2011, 56: 2305–2311

    Article  Google Scholar 

  31. Fan-Yuan G J, Chen W, Lu F Y, et al. A universal simulating framework for quantum key distribution systems. Sci China Inf Sci, 2020, 63: 180504

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported by National Key Research and Development Program of China (Grant No. 2018YFA0306400), National Natural Science Foundation of China (Grant Nos. 61627820, 61622506, 61822115), Anhui Initiative in Quantum Information Technologies (Grant No. AHY030000). This work was partially carried out at the USTC Center for Micro and Nanoscale Research and Fabrication.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, GW., Chen, W., Fan-Yuan, GJ. et al. Polarization-insensitive quantum key distribution using planar lightwave circuit chips. Sci. China Inf. Sci. 65, 200506 (2022). https://doi.org/10.1007/s11432-022-3514-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11432-022-3514-3

Keywords

Navigation