Skip to main content
Log in

Proton radiation effects on high-speed silicon Mach-Zehnder modulators for space application

  • Research Paper
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

In this paper, performance degradation effects on high-speed silicon Mach-Zehnder modulators under proton radiation were investigated for future space environment applications. The test devices were exposed to 3-MeV protons of three fluence levels (5 × 1013, 2 × 1014, and 5 × 1015 ions/cm2), which is comparable to the radiation amount for operating in a harsh space environment after several decades. The performance of the silicon modulator after radiation was characterized in terms of modulation efficiency and eye diagram. The results illustrate that the modulation efficiency is significantly reduced after proton radiation and shows an obvious decrease with increasing radiation fluence. The extinction ratios of the on-off keying (OOK) eye diagram are obviously dropped with increasing radiation fluence and correspond well to modulation efficiency degradation. Furthermore, three representative states for data transmission are demonstrated under three fluences, from still working to the critical state and eventually complete fail. Displacement damage and ionization damage are the two major mechanisms during proton radiation, which lead to the bulk defects and accumulating defect charges and cause performance degradation of silicon Mach-Zehnder modulators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Reed G T, Mashanovich G, Gardes F Y, et al. Silicon optical modulators. Nat Photon, 2010, 4: 518–526

    Article  Google Scholar 

  2. Shen B T, Shu H W, Zhou L J, et al. A design method for high fabrication tolerance integrated optical mode multiplexer. Sci China Inf Sci, 2020, 63: 160409

    Article  MathSciNet  Google Scholar 

  3. Hao Y, Xiang S Y, Han G Q, et al. Recent progress of integrated circuits and optoelectronic chips. Sci China Inf Sci, 2021, 64: 201401

    Article  Google Scholar 

  4. Wang H, Chai H, Lv Z, et al. Silicon photonic transceivers for application in data centers. J Semicond, 2020, 41: 101301

    Article  Google Scholar 

  5. Tao Y, Shu H, Wang X, et al. Hybrid-integrated high-performance microwave photonic filter with switchable response. Photon Res, 2021, 9: 1569–1580

    Article  Google Scholar 

  6. Bai B W, Shu H W, Wang X J, et al. Towards silicon photonic neural networks for artificial intelligence. Sci China Inf Sci, 2020, 63: 160403

    Article  Google Scholar 

  7. Jin M, Tang S J, Chen J H, et al. 1/f-noise-free optical sensing with an integrated heterodyne interferometer. Nat Commun, 2021, 12: 1973

    Article  Google Scholar 

  8. Reed G T, Mashanovich G Z, Gardes F Y, et al. Recent breakthroughs in carrier depletion based silicon optical modulators. Nanophotonics, 2014, 3: 229–245

    Article  Google Scholar 

  9. Dong P, Chen L, Chen Y K. High-speed low-voltage single-drive push-pull silicon Mach-Zehnder modulators. Opt Express, 2012, 20: 6163–6169

    Article  Google Scholar 

  10. Xiao X, Xu H, Li X, et al. High-speed, low-loss silicon Mach-Zehnder modulators with doping optimization. Opt Express, 2013, 21: 4116–4125

    Article  Google Scholar 

  11. Perez-Galacho D, Bramerie L, Baudot C, et al. QPSK modulation in the O-band using a single dual-drive Mach-Zehnder silicon modulator. J Lightwave Technol, 2018, 36: 3935–3940

    Article  Google Scholar 

  12. Deniel L, Gay M, Galacho D P, et al. DAC-less PAM-4 generation in the O-band using a silicon Mach-Zehnder modulator. Opt Express, 2019, 27: 9740–9748

    Article  Google Scholar 

  13. Patel D, Ghosh S, Chagnon M, et al. Design, analysis, and transmission system performance of a 41 GHz silicon photonic modulator. Opt Express, 2015, 23: 14263–14287

    Article  Google Scholar 

  14. Simard A D, Filion B, Patel D, et al. Segmented silicon MZM for PAM-8 transmissions at 114 Gb/s with binary signaling. Opt Express, 2016, 24: 19467–19472

    Article  Google Scholar 

  15. Li M, Wang L, Li X, et al. Silicon intensity Mach-Zehnder modulator for single lane 100 Gb/s applications. Photon Res, 2018, 6: 109–116

    Article  MathSciNet  Google Scholar 

  16. He M, Xu M, Ren Y, et al. High-performance hybrid silicon and lithium niobate Mach-Zehnder modulators for 100 Gbit s−1 and beyond. Nat Photonics, 2019, 13: 359–364

    Article  Google Scholar 

  17. Tao Y, Shu H, Jin M, et al. Numerical investigation of the linearity of graphene-based silicon waveguide modulator. Opt Express, 2019, 27: 9013–9031

    Article  Google Scholar 

  18. Datta I, Chae S H, Bhatt G R, et al. Low-loss composite photonic platform based on 2D semiconductor monolayers. Nat Photonics, 2020, 14: 256–262

    Article  Google Scholar 

  19. Wolf S, Zwickel H, Kieninger C, et al. Coherent modulation up to 100 GBd 16QAM using silicon-organic hybrid (SOH) devices. Opt Express, 2018, 26: 220–232

    Article  Google Scholar 

  20. Lu G W, Hong J, Qiu F, et al. High-temperature-resistant silicon-polymer hybrid modulator operating at up to 200 Gbit s−1 for energy-efficient datacentres and harsh-environment applications. Nat Commun, 2020, 11: 4224

    Article  Google Scholar 

  21. Du Q, Michon J, Li B, et al. Real-time, in situ probing of gamma radiation damage with packaged integrated photonic chips. Photon Res, 2020, 8: 186–193

    Article  Google Scholar 

  22. Krainak M, Stephen M, Troupaki E, et al. Integrated photonics for NASA applications. In: Proceedings of Conference on Components and Packaging for Laser Systems V, 2019. 10899: 108990F

    Google Scholar 

  23. Barnes C, Swift G, Johnston A, et al. Radiation effects considerations for the application of photonics in space systems. In: Proceedings of IEEE Aerospace Conference, 1998. 2: 219–239

    Google Scholar 

  24. Zeiler M, El Nasr-Storey S S, Detraz S, et al. Radiation damage in silicon photonic Mach-Zehnder modulators and photodiodes. IEEE Trans Nucl Sci, 2017, 64: 2794–2801

    Article  Google Scholar 

  25. Oldham T R, McLean F B. Total ionizing dose effects in MOS oxides and devices. IEEE Trans Nucl Sci, 2003, 50: 483–499

    Article  Google Scholar 

  26. Siconolfi S, Mekki J, Oser P, et al. Prediction methodology for proton single event burnout: application to a STRIPFET device. IEEE Trans Nucl Sci, 2015, 62: 2635–2642

    Article  Google Scholar 

  27. Boutillier M, Gauthier-Lafaye O, Bonnefont S, et al. First evaluation of proton irradiation effects on InAs/InP quantum dash laser diodes emitting at 1.55 µm. IEEE Trans Nucl Sci, 2008, 55: 2243–2247

    Article  Google Scholar 

  28. Gajanana D, van Beuzekom M, Smit M, et al. Irradiation tests on InP based Mach Zehnder modulator. J Inst, 2013, 8: C02025

    Google Scholar 

  29. Huang H C, Dadap J I, Malladi G, et al. Helium-ion-induced radiation damage in LiNbO3 thin-film electro-optic modulators. Opt Express, 2014, 22: 19653–19661

    Article  Google Scholar 

  30. Chen Y, Ye Z, Wu Y, et al. Nonlinear Cherenkov radiations modulated by mode dispersion in a Ti in-diffused LiNbO3 planar waveguide. Opt Express, 2018, 26: 2006–2012

    Article  Google Scholar 

  31. Girard S, Baggio J, Bisutti J. 14-MeV neutron, 7-ray, and pulsed X-ray radiation-induced effects on multimode silica-based optical fibers. IEEE Trans Nucl Sci, 2006, 53: 3750–3757

    Article  Google Scholar 

  32. Girard S, Kuhnhenn J, Gusarov A, et al. Radiation effects on silica-based optical fibers: recent advances and future challenges. IEEE Trans Nucl Sci, 2013, 60: 2015–2036

    Article  Google Scholar 

  33. Nasr-Storey S, Boeuf F, Baudot C, et al. Effect of radiation on a Mach-Zehnder interferometer silicon modulator for HL-LHC data transmission applications. IEEE Trans Nucl Sci, 2015, 62: 329–335

    Article  Google Scholar 

  34. Hoffman G B, Gehl M, Martinez N J, et al. The effect of Gamma radiation exposure on active silicon photonic device performance metrics. IEEE Trans Nucl Sci, 2019, 66: 801–809

    Article  Google Scholar 

  35. Xapsos M A, O’Neill P M, O’Brien T P. Near-Earth space radiation models. IEEE Trans Nucl Sci, 2013, 60: 1691–1705

    Article  Google Scholar 

  36. Barth J L, Dyer C S, Stassinopoulos E G. Space, atmospheric, and terrestrial radiation environments. IEEE Trans Nucl Sci, 2003, 50: 466–482

    Article  Google Scholar 

  37. Duzellier S. Radiation effects on electronic devices in space. Aerospace Sci Tech, 2005, 9: 93–99

    Article  Google Scholar 

  38. Hands A D P, Ryden K A, Meredith N P, et al. Radiation effects on satellites during extreme space weather events. Space Weather, 2018, 16: 1216–1226

    Article  Google Scholar 

  39. Dodds N A, Schwank J R, Shaneyfelt M R, et al. Hardness assurance for proton direct ionization-induced SEEs using a high-energy proton beam. IEEE Trans Nucl Sci, 2014, 61: 2904–2914

    Article  Google Scholar 

  40. Garrett H B, Jun I. First adiabatic invariants and phase space densities for the jovian electron and proton radiation Belts-Galileo and GIRE3 estimates. JGR Space Phys, 2021, 126: e28593

    Article  Google Scholar 

  41. Morris G K. Streamlining the electronic component derating process: an electrical engineering perspective. In: Proceedings of Annual Reliability and Maintainability Symposium, 2018

  42. Garrett H, Jun I, Evans R, et al. The latest Jovian-trapped Proton and heavy ion models. IEEE Trans Nucl Sci, 2017, 64: 2802–2813

    Article  Google Scholar 

  43. Ding L, Gerardin S, Bagatin M, et al. Investigation of total ionizing dose effect and displacement damage in 65 nm CMOS transistors exposed to 3 MeV protons. Nucl Instruments Methods Phys Res Sect A, 2015, 796: 104–107

    Article  Google Scholar 

  44. Srour J R, Marshall C J, Marshall P W. Review of displacement damage effects in silicon devices. IEEE Trans Nucl Sci, 2003, 50: 653–670

    Article  Google Scholar 

  45. Paillet P, Schwank J R, Shaneyfelt M R, et al. Comparison of charge yield in MOS devices for different radiation sources. IEEE Trans Nucl Sci, 2002, 49: 2656–2661

    Article  Google Scholar 

  46. Ziegler J F, Ziegler M D, Biersack J P. SRIM—The stopping and range of ions in matter (2010). Nucl Instrum Methods Phys Res Sect B, 2010, 268: 1818–1823

    Article  Google Scholar 

  47. Thomson D J, Gardes F Y, Hu Y, et al. High contrast 40 Gbit/s optical modulation in silicon. Opt Express, 2011, 19: 11507

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by National Key Research and Development Program of China (Grant No. 2021YFB2800400), National Natural Science Foundation of China (Grant Nos. 62001010, 11975034, 11921006, U20B2025), and Beijing Natural Science Foundation (Grant No. Z210004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xingjun Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, C., Hu, Z., Tao, Y. et al. Proton radiation effects on high-speed silicon Mach-Zehnder modulators for space application. Sci. China Inf. Sci. 65, 222401 (2022). https://doi.org/10.1007/s11432-022-3556-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11432-022-3556-0

Keywords

Navigation