
. REVIEW PAPER .

A Review of Machine Learning-based Failure
Management in Optical Networks

Danshi WANG1, Chunyu ZHANG1, Wenbin CHEN1, Hui YANG1,

Min ZHANG1* & Alan Pak Tao LAU2,3*

1 State Key Laboratory of Information Photonics and Optical Communications,

Beijing University of Posts and Telecommunications (BUPT), Beijing 100876, China;
2Photonics Research Center, Department of Electrical Engineering,

The Hong Kong Polytechnic University, Hong Kong SAR, China;
3The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518057, China

Abstract Failure management plays a significant role in optical networks. It ensures secure operation,

mitigates potential risks, and executes proactive protection. Machine learning (ML) is considered to be an

extremely powerful technique for performing comprehensive data analysis and complex network management

and is widely utilized for failure management in optical networks to revolutionize the conventional manual

methods. In this study, the background of failure management is introduced, where typical failure tasks,

physical objects, ML algorithms, data source, and extracted information are illustrated in detail. An overview

of the applications of ML in failure management is provided in terms of alarm analysis, failure prediction,

failure detection, failure localization, and failure identification. Finally, the future directions on ML for failure

management are discussed from the perspective of data, model, task, and emerging techniques.
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1 Introduction

In the present big data era, data is growing exponentially, and optical networks serve as the backbone for
high-capacity and long-distance data transmission. The optical networks are always large scale, comprise
massive components, and cover a wide area. Considering this, instances of failure will cause extremely seri-
ous consequences, such as massive data loss, large-scale computing interruption, core information transfer
blocking. All users including the government, private enterprises, financing institutions, transportation
industry, manufacturing industry, and individuals would suffer heavy economic losses. Therefore, failure
management in optical networks is crucial to ensure the stable operation, maintain the service status,
and, in the event of a failure, recovery the failure rapidly.

Optical networks are subject to several types of failure, primarily divided into soft and hard failure.
These typically include fiber cut, filter effect, laser drift, component (e.g., optical module, optical am-
plifier, optical switch) breakdown, and system aging. Handling network failures can be accomplished
at different levels, i.e., alarm analysis, failure prediction, failure detection, failure identification, failure
magnitude estimation, and failure localization [1]. Conventional failure management methods typically
implement these functions using simplified threshold methods or probability statistics models. However,
these are effective only for simple and static cases. For complex and dynamics cases, expert manual
intervention is still required, which leads to high labor costs and inevitable personal errors.

Recently, techniques from artificial intelligence (AI) have been widely studied to address multiple
problems in optical networks, such as traffic prediction, topology design, path computation, resource
allocation, as well as failure management [2–4]. From conventional machine learning (ML) to neural
network-based deep learning (DL), various algorithms in AI communities can help analyze and process a
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large amount of data and information collected from the continuous activity of a huge number of monitors
and alarms. Based on the available data and objectives of a given model, the proper learning algorithms
are selected and modified to fulfill the corresponding tasks in terms of different failure scenarios [5]. In
this manner, a variety of intelligent, accurate, and low-cost solutions are developed.

As a tutorial paper, literature [1] presented a gentle introduction to ML-based failure management and
provided the guidance on how to explore the following researches about this topic, but not a comprehensive
review article. Even several ML-related survey or review papers have been published, literatures [2–4]
involve the various applications of ML on all sides of optical communications and networks, but not
specialized on failure management. All of these papers were published in its infancy before 2019. However,
as we known, applications of ML in failure management grows rapidly during recent years, but still lacking
of a complete survey on this special topic that summarizes the up-to-date works.

In this study, we review the applications of ML to failure management in optical networks from infancy
to the near term. First, we introduce the background of failure management and interpret the typical
tasks. The key physical objects that need health monitoring in optical networks and the potential failure
categories for each object are listed in detail. Then various ML algorithms applied for failure management
are depicted. ML algorithms are strongly dependent on data, and thus, the data sources with data content
and extracted information in optical networks are also discussed. Following that, we survey the existing
schemes of ML-based failure management in terms of alarm analysis, failure prediction, failure detection,
failure localization, and failure identification. Finally, the future scope of this topic is envisioned from
the perspective of data, model, task, and emerging techniques.

2 Background on Failure Management in Optical Networks

2.1 Concept of Failure Management

The objective of failure management is to detect, isolate, and repair all types of network faults, ensure the
reliable and stable operation of the network, and meet the customer’s service level agreement. Tasks in
failure management are generally divided into active and passive methods, which can be roughly divided
into alarm analysis, failure prediction, failure detection, failure identification, failure diagnosis, failure
localization [6], as illustrated in Fig. 1.

The objective of failure management is to detect, isolate and repair all types of network faults, ensure the reliable 

and stable operation of the network, and meet the customer's service level agreement. Tasks in failure management 

are generally divided into active and passive methods, which can be roughly divided into failure prediction, failure 

detection, failure identification, failure diagnosis, failure location, and alarm analysis, as illustrated in Fig. 1. Failure 

prediction is a proactive defense method that predicts the possibility of equipment abnormality through certain signs 

(generally received from various sensors) before a fault occurs, and takes active measures to prevent failure. Failure 

detection, identification, diagnosis, and location are passive methods that are a series of actions taken after a fault 

occurs, with the aim of recovering the fault system as soon as possible.  
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Fig. 1. Concept of failure management consisting of alarm analysis, failure prediction, failure detection, failure identification, failure diagnosis, 

failure location, etc.   

Failure prediction focuses on judging the operating state of the monitored object before it fails, and predicting the 

possible anomalies present in the monitored object. The active prediction method generally returns the failure 

probability of the monitored object, and divides its operating state into different grades (i.e., health or different 

degrees of fault), and then gauges whether the key parameter index reaches or exceeds the critical threshold, or 

forecasts the remaining life of the monitored object.  

In contrast to failure prediction, failure detection, identification, location and diagnosis are all triggered by the 

occurrence of failures for the sake of quick troubleshooting. Failure detection focuses on confirming whether a fault 

occurs after the fault warning or alarm, and its goal is to quickly detect the objects the monitoring parameters of 

which exceed the threshold value for a certain period. Conventional failure detection schemes based on threshold 

systems rely heavily on expert experience. Moreover, loose thresholds trigger a large amount of alarms, while strict 

thresholds result in low detection rates. Most of the intelligent failure detection schemes are data-driven and are 

modeled based on historical and current data to predict the operating state of the monitored object.  

After fault detection, identifying the fault type (including fault cause) is crucial for recovering the faulty system. 

Failure identification is typically modeled as a multi-classification problem and adopts the method of supervised 

learning. Moreover, the identification model can output the probability of each fault type and, subsequently, confirm 

the type with the highest probability as the primary fault identity or cause.  

In addition, accurate and rapid fault location after detecting failure can significantly reduce the fault repair time. 

On the one hand, with the help of alarm data, the root alarm can be found through alarm correlation analysis, and the 

fault components can be located based on the location information of the root alarm. On the other hand, the 

performance data are used for modeling to determine the faulty components, where the performance data is acquired 

from the monitor that comes with the system or the deployment of additional monitoring equipment.  

Failure diagnosis focuses on analyzing the fault after it occurs. This step includes confirming the type, magnitude, 

cause, location, and time of the failure. Conventional failure diagnosis is generally performed by operation and 

maintenance personnel who perform the functions of judgment and fault auxiliary analysis. The fault auxiliary 

analysis function is based on the general statistical analysis method of network management data. However, it lacks 

Figure 1 Concept of failure management consisting of alarm analysis, failure prediction, failure detection, failure identification,

failure diagnosis, failure localization, etc.

The alarm analysis conducts fault management on the monitoring object by studying the alarm data
and information. When a fault occurs, massive alarms with different types and levels are often accompa-
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nied by network management. The current alarm analysis is primarily divided into two categories: one
is alarm prediction with the purpose of predicting whether this type of alarm will occur in the future;
the other is relationship analysis between alarm data using data mining or ML methods to find the root
cause and locate the fault according to the localization information of the root cause.

Failure prediction is a proactive defense method that predicts the possibility of equipment abnormality
through certain signs (generally received from various monitors) before a failure occurs, and takes active
measures to prevent failure. Failure detection, identification, diagnosis, and localization are passive
methods that are a series of actions taken after a failure occurs, with the aim of recovering the fault
system as soon as possible. Failure detection focuses on confirming whether a fault occurs after the
fault warning or alarm, and its goal is to quickly detect the failure severity (i.e., health or different fault
degrees).

After fault detection, identifying the fault type is crucial for recovering the faulty system. Failure
identification is typically modeled as a multi-classification problem and adopts the method of supervised
learning. Moreover, the identification model can output the probability of each fault type and, subse-
quently, confirm the type with the highest probability as the primary fault identity. In addition, accurate
and rapid fault localization after a failure can significantly reduce the fault repair time. The failed ele-
ment and specific position (e.g., the localization of failed node, link, or equipment) need to be localized
in the network. With the help of alarm data, the root alarm can be found through alarm correlation
analysis, and the failed element can be located based on the localization information of the root cause.

Failure diagnosis focuses on analyzing the fault after it occurs [7]. This step includes confirming the
type, magnitude, cause, localization, and time of the failure. Conventional failure diagnosis is generally
performed by operation and maintenance personnel who perform the functions of judgment and fault
auxiliary analysis. The fault auxiliary analysis function is based on the general statistical analysis method
of network management data. However, it lacks the ability to comprehensively analyze a large volume of
data. Therefore, intelligent diagnosis is needed to improve operation and maintenance efficiency.

2.2 Managed Objects in Optical Networks and Typical Failure Categories

the ability to comprehensively analyze a large volume of data. Therefore, intelligent diagnosis is needed to improve 

operation and maintenance efficiency.  

The alarm analysis conducts fault management on the monitoring object by studying the alarm data and 

information. When a fault occurs, massive alarms with different types and levels are often accompanied by network 

management. The current alarm analysis is primarily divided into two categories: one is alarm prediction with the 

purpose of predicting whether this type of alarm will occur in the future; the other is relationship analysis between 

alarm data using data mining or ML methods to find the root alarm and locate the fault according to the location 

information of the root alarm. 

2.2. Managed Objects in Optical Networks and Typical Failure Categories 
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Fig. 2. Optical components of optical networks: monitored objects for failure management; the product photos for each object; the typical failures 

of each object. 

In optical networks, failure management is implemented in some critical objects, such as lightpath, optical fiber, 

optical filter, optical module, optical amplifier, optical connector, or optical equipment integrating these optical 

components, as shown in Fig. 2. Different objects suffer from different failure categories, summarized as follows: 

Lightpath: a section of an optical network that light travels through without being modified. A lightpath is a path 

that carries the optical signal on a lightwave from source to destination node within optical domain. The optical 

signal is essentially transmitted from the transmitter, over multi-span fiber, amplifier, filter, to the detector at the 

destination, which is a complete optical transmission process. For a lightpath, the typical failures types are bit error 

rate (BER) degradation, optical signal to noise ratio (OSNR) degradation, generalized SNR (GSNR) degradation, 

optical power drop, channel crosstalk, etc. Failure management on lightpath is a system-level management scheme 

concerning the overall system performance metrics. 

Optical fiber: a cylindrical waveguide that transmits light along its axis by total internal reflection. Fiber is the 

core component of optical networks and is the link connecting two points. Fiber optic cables are ubiquitous in 

optical networks and are widely deployed. Frequent damaged by wildlife, stray animals, bad weather, natural 

disasters, or construction work is common. Thus, fiber failure is the most common and major failure source. The 

typical fiber failures include but are not limited to fiber aging, fiber break, fiber bending, fiber nonlinearity, 

parameter variations (like loss increase). Most failure management tasks focus on fiber impairment estimation, 

diagnosis, and broken point location. 

Optical filter: a device with wavelength-dependent transmission or reflectance. An optical filter selectively 

permits the passage of a range of wavelengths, while blocking others. There are various types of filters, such as 

bandpass, notch, and edge filters. In optical networks, optical filters include MUX, DMUX, wavelength selective 

switch (WSS) enabled by array waveguide grating (AWG), and liquid crystal on silicon (LCoS). They are 

wavelength management components and primarily used for tasks such as wavelength division 

Figure 2 Components of optical networks: monitored objects for failure management; the product photos for each object; the

typical failures of each object.

In optical networks, failure management is implemented for some core objects, such as lightpath, optical
fiber, optical filter, optical module, optical amplifier, optical connector, or optical equipment integrating
these optical components, as shown in Fig. 2. Different objects suffer from different failure categories,
summarized as follows:
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Lightpath: a section of an optical network that light travels through without being modified. A
lightpath is a path that carries the optical signal on a lightwave from source to destination node within
optical domain. The optical signal is essentially transmitted from the transmitter, over multi-span fiber,
amplifier, filter, to the detector at the destination, which is a complete optical transmission process [8].
For a lightpath, the typical failures types are bit error rate (BER) degradation, optical signal to noise
ratio (OSNR) degradation, generalized SNR (GSNR) degradation, optical power drop, channel crosstalk,
etc. Failure management on lightpath is a system-level management scheme concerning the overall system
performance metrics [9, 10].

Optical fiber: a physical channel that transmits optical signal along its axis by total internal reflection.
Fiber is the core component of optical networks and is the link connecting two points. In optical networks,
fiber optic cables are ubiquitous and widely deployed, which are frequently damaged by wildlife, stray
animals, bad weather, natural disasters, or construction work. Thus, fiber failure is the most common
and major failure source. The typical fiber failures include but are not limited to fiber aging, fiber break,
fiber bending, fiber nonlinearity, parameter variations (like loss increase). Most failure management tasks
focus on fiber impairment estimation, diagnosis, and broken point localization [11].

Optical filter: a device with wavelength-dependent transmission or reflectance. An optical filter
selectively permits the passage of a range of wavelengths, while blocking others. There are various types
of filters, such as bandpass, notch, and edge filters. In optical networks, optical filters include MUX,
DMUX, wavelength selective switch (WSS) enabled by array waveguide grating (AWG), or liquid crystal
on silicon (LCoS). They are wavelength management components and primarily used for tasks such as
wavelength division multiplexing/demultiplexing, dynamic control of channel width, wavelength selection,
wavelength switch, optical equalization. Filter failures occur frequently and are generally soft failures,
such as filter shifting, filter tightening, filter blocking, loss increase, WSS misconfiguration, etc [12].

Optical module: a hot-pluggable optical transceiver used for optical signal transmitting and receiv-
ing. Optical modules typically integrate laser, electrooptical modulator, photoelectric detector, amplifier,
digital to analog converter (DAC), analog to digital converter (ADC), digital signal processing (DSP)
chip, and circuit control units. Optical modules encounter several types of failure, including launch power
degradation, bias current anomaly, temperature rise, laser anomaly, wavelength drift, signal performance
imperfection, receiving sensitivity deterioration. As a packaged active component, failure check and trou-
bleshooting of the optical module is always challenging and is conventionally performed by experienced
engineers [13].

Optical amplifier: an optical repeater that amplifies optical signals directly without optical-to-
electrical conversion. Optical amplifier is extremely important for long-distance optical transmission.
Based on different physical mechanisms, several types of optical amplifiers exist, including erbium-doped
fiber amplifier (EDFA), Raman amplifier (RA), semiconductor optical amplifier (SOA), and optical para-
metric amplifier. In optical networks, EDFA is the most widely applied commercial amplifier due to its
high energy conversion efficiency and large gain with little crosstalk [14]. However, it also has a relatively
high noise figure (NF) and frequency-dependent gain profile. In addition, RA based on stimulated Ra-
man scattering (SRS) is another viable option especially for wideband optical transmission (C+L-band)
owing to its low NF, distributed amplification, and wide gain spectrum. The RA is always combined with
EDFA for hybrid amplification. The typical failure types found in optical amplifiers are gain reduction,
output power anomaly, amplifier spontaneous emission (ASE) noise increasement, aging of pump lasers,
and incremental power excursion.

Optical connector: a passive component that enables quicker connection and disconnection between
two optical fibers. The connectors mechanically couple and align the cores of fibers so that light can pass
from one fiber to the other one [15]. There are various types of optical connectors (LC, SC, FC, ST)
and optical terminals (PC, APC, UPC). Under normal conditions, the terminals and connectors should
be well matched and perfectly joined; any defects in the connectors may cause failures and extra loss,
such as disconnection, mismatch, misalignment, dirt on cross-sectioning, reflective fault, angular fault.

2.3 AI for Failure Management

In optical networks, the main objective of failure management is to guarantee above-depicted devices
stable operation, proactive protection, and quick recovery. However, traditional failure management still
requires complex and time-consuming human intervention. To drive the failure management towards
intelligence and efficiency, techniques from AI have been widely applied to address above tasks, evolving
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multiplexing/demultiplexing, dynamic control of channel width, wavelength selection, wavelength switch, optical 

equalization. Filter failures occur frequently and are generally soft failures, such as filter shifting, filter tightening, 

filter blocking, loss increasement, WSS misconfiguration 

Optical module: a hot-pluggable optical transceiver used for optical signal transmitting and receiving. Optical 

modules typically integrate laser, electrooptical modulator, photoelectric detector, amplifier, digital to analog 

converter (DAC), analog to digital converter (ADC), digital signal processing (DSP) chip, and circuit control units. 

Optical modules encounter several types of failure, including launch power degradation, bias current anomaly, 

temperature rise, laser anomaly, wavelength drift, signal performance imperfection, receiving sensitivity reduction. 

As a packaged active component, failure check and troubleshooting of the optical module is always challenging and 

is conventionally performed by experienced engineers. 

Optical amplifier: a device that amplifies optical signals directly without optical-to-electrical conversion using 

optical repeaters. This component is extremely important for long-distance optical transmission. Based on different 

physical mechanisms, several types of optical amplifiers exist, including erbium-doped fiber amplifier (EDFA), 

Raman amplifier (RA), semiconductor optical amplifier (SOA), and optical parametric amplifier. In optical 

networks, EDFA is the most widely applied commercial amplifier due to its high energy conversion efficiency and 

large gain with little crosstalk. However, it also has a relatively high noise figure (NF) and frequency-dependent 

gain profile. In addition, RA based on stimulated Raman scattering (SRS) is another viable option especially for 

wideband optical transmission (C+L band) owing to its low NF, distributed amplification, and wide gain spectrum. 

The RA is always combined with EDFA for hybrid amplification. The typical failure types found in optical 

amplifiers are gain reduction, amplifier spontaneous emission (ASE) noise increasement, aging of pump lasers, and 

incremental power excursion. 

Optical connector: a passive component that enables quicker connection and disconnection between two optical 

fibers. The connectors mechanically couple and align the cores of fibers so that light can pass from one fiber to the 

other one. There are various types of optical connectors (LC, SC, FC, ST) and optical terminals (PC, APC, UPC). 

Under normal conditions, the terminals and connectors should be well matched and perfectly joined; any defects in 

the connectors may cause failures, such as disconnection, mismatch, misalignment, dirt on cross-sectioning, 

reflective fault, angular fault. 

2.3. AI for Failure Management 
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Fig. 3. Machine learning and deep learning are applied to failure management to solve various tasks. 

In optical networks, the main objective of failure management is to guarantee above-depicted objects stable 

operation, proactive protection, and quick recovery. However, traditional failure management still requires complex 

and time-consuming human intervention. To drive the failure management towards intelligence and efficiency, 

techniques from AI have been widely applied to address above tasks, evolving from the early ML to recent DL, as 

shown in Fig. 2. ML is a main branch of AI based on the idea that systems can learn from data, identify patterns, and 

make decisions with minimal human intervention. In ML families, many famous and powerful algorithms have been 

studied for failure management, such as support vector machine (SVM), Naïve Bayes, decision tree, artificial neural 

network (ANN), extreme gradient boosting (XGBoost), autoencoder, Gaussian process, etc. According to function 

arbitrary, MLs can be typically divided as classification algorithm and regression algorithm, which are both 

supervised learning algorithms. The regression is a process to find the correlations between dependent and 

independent variables, which are used to predict the continuous values, such failure prediction, alarm analysis, or 

Figure 3 Machine learning and deep learning are applied to failure management to solve various tasks.

from the early ML to recent DL, as shown in Fig. 3. ML is a main branch of AI based on the idea that
systems can learn from data, identify patterns, and make decisions with minimal human intervention
[16]. In ML families, many famous and powerful algorithms have been studied for failure management,
such as support vector machine (SVM), Näıve Bayes, decision tree, artificial neural network (ANN),
extreme gradient boosting (XGBoost), autoencoder, Gaussian process, etc. According to the operation
function, ML algorithms can be typically divided as classification algorithm and regression algorithm,
which are both supervised learning algorithms. The regression is a process to find the correlations
between dependent and independent variables, which are used to predict the continuous values, such
failure prediction, alarm analysis, or state parameters fitting; the classification is a process to categorize
the data into different classes, which are used for failure detection, identification, or localization.

Driven by the growth of data volumes and improvement of computing power, ML have successfully
evolved into DL to handle the more complex and large-scale problems with robust, adoptable, and pow-
erful solutions [17]. As the subset of ML, DL can be generally understood as deep neural network (DNN)
with multiple nonlinear layers. Among DL communities, recurrent neural network (RNN), convolutional
neural network (CNN), graph neural network (GNN), Bayesian neural network (BNN), generative neural
network (GAN), and their variants have made distinctive contribution to pattern recognition, time series
data processing, correlation analysis, and data enhancement. Furthermore, deep reinforcement learning
(DRL) has made great breakthroughs in solving complicated controlling problems based on environment-
aware mechanism. DL plays an important role in perception that can acquire the observation information
from environment and provide the current state information, while DRL shows powerful advantages in
decision-making that can sense complex system states and learn the optimal policies through repeated
interactions with the environment.

2.4 Data and Information Collected from Optical Networks for Failure Management

Basically, ML models are trained by data and learn from extracted information, that is, the more data you
provide to an ML system, the faster and better that model can learn and improve. Thus, the performance
of learning algorithms depends heavily on data quantity and quality. In optical networks, data can come
in several forms that can be roughly divided into numerical data, time series data, text data, image
data, and statistical data [18, 19]. The realization of failure management is based on the collected data
pertaining to all elements and over the entire lifetime of the system. Here, we summarize data collectors
in optical networks and the collected data and extracted information that are used for ML-based failure
management:

Alarm log: as events that might require attention occur, the network management system (NMS)
raises an alarm. Millions of alarms may appear in optical networks every month, containing a wealth of
failure information but also including a mass of false or nuisance alarms [20]. Alarm logs are text data
containing rich information—alarm ID/name, alarm type, alarm severity, alarm source, occurrence time,
etc. For a specific alarm, the detailed illustration (definition, type, impact) is reported as context. Dealing
with alarm data is important for failure management, including alarm compression, alarm correlation
analysis, and alarm root cause identification.

OSA: optical spectrum analyzer (OSA) is an instrument used to measure the properties of optical
spectrum and display the distribution of power over a specified wavelength range [21]. OSA is one of
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state parameters fitting; the classification is a process to categorize the data into different classes, which are used to 

failure detection, identification, or location. 

Driven by the growth of data volumes and improvement of computing power, MLs have successfully evolved into 

DL to handle the more complex and large-scale problems with robust, adoptable, and powerful solutions. As the 

subset of ML, DL can be generally understood as deep neural network (DNN) with multiple nonlinear layers. 

Among DL communities, recurrent neural network (RNN), convolutional neural network (CNN), graph neural 

network (GNN), Bayesian neural network (BNN), generative neural network (GAN), and their variants have made 

distinctive contribution to pattern recognition, time series data processing, correlation analysis, and data 

enhancement. Furthermore, deep reinforcement learning (DRL) has made great breakthroughs in solving 

complicated controlling problems based on environment-aware mechanism. DL plays an important role in 

perception that can acquire the observation information from environment and provide the current state information, 

while RL shows powerful advantages in decision-making that can sense complex system states and learn the best 

policies through repeated interactions with the environment. With the help of DL, failure management is evolved 

towards security, stability, and intelligence. 

2.4. Data and Information from Optical Networks for Learning and Training 
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Fig. 4. Data collector, collected data, and extracted information from optical networks. 

Basically, ML models are trained by data and learn from extracted features, that is, the more data you provide to an 

ML system, the faster and better that model can learn and improve. Thus, the performance of learning algorithms 

depends heavily on data quantity and quality. In optical networks, data can come in several forms that can be 

roughly divided into numerical data, time series data, text data, image data, and categorical data. The realization of 

failure management is based on the collected data pertaining to all elements and over the entire lifetime of the 

system. Here, we summarize data collectors in optical networks and the corresponding data and extracted 

information that are used for ML-based failure management: 

Alarm log: as events that might require attention occur, the network management system (NMS) raises an alarm. 

Millions of alarms may appear in optical networks every month, containing a wealth of failure information but also 

including a mass of false or nuisance alarms. Alarm logs are text data containing rich information—alarm ID/name, 

alarm type, alarm severity, alarm source, occurrence time, etc. For a specific alarm, the detailed illustration 

(definition, type, impact) is reported as context. Dealing with alarm data is important for failure management, 

including alarm compression, alarm correlation analysis, alarm root cause identification. 

Optical spectrometer: an instrument used to measure the properties of optical spectrum and display the distribution 

of power over a specified wavelength range. Optical spectrum collection is one of the most useful tools for optical 

Figure 4 Data collector, collected data, and extracted information from optical networks for failure management.

the most useful tools for optical performance monitoring (OPM), quality of signal (QoS) analysis, and
network resource management (NRM) [22]. Thus, optical spectral data are crucial for failure manage-
ment, and lots of information can be obtained from the optical spectrum, such as channel distribution
condition, optical signal parameters (wavelength, bandwidth, OSNR, power), and non-ideal filter effects.
By analyzing spectral characteristics, multiple distortions can be identified, contributing to soft failure
detection and prediction.

Receiver: digitalized electrical signal obtained at the receiver after photoelectric detection and ADC.
Digital signals in time domain carry abundant information that can comprehensively reflect the joint
impairments of transmitter, fiber channel, and receiver [23]. After digital signal processing (DSP),
the electrical spectrum can be easily obtained through Fourier transform. Meanwhile, the eye and con-
stellation diagrams, which are the commonly-used analysis objects, are generated from the digital signal
[24,25]. These diagrams present the amplitude and phase information of signals in all types of modulation
formats. The distorted eye and constellation diagrams qualitatively present the degrees of impairments,
such as nonlinear phase noise (NLPN), linear noise, I/Q imbalance, and skew effect. In addition, mul-
tiple ultimate performance indicators such as bit error rate (BER), extinction ratio (ER), error vector
magnitude (EVM), and Q-factor can be calculated.

DSP module: an algorithm module embedded in a digital coherent receiver is used for signal recovery,
including de-skew, orthogonalization, normalization, digital equalization, timing recovery, interpolation,
carrier estimation, etc. To mitigate the effect of various impairments, plenty of DSP algorithms are inves-
tigated based on the specific physical principle and insight of transmission process. Thus, by analyzing
the parameters of DSP algorithms, certain impairment information such as fiber nonlinearity, loss profile,
dispersion, phase noise, frequency offset, pre-FEC BER can be derived directly without other hardware
[26–28]. DSP-based failure management is a cost-effective and easily-implementable solution.

Monitoring system: a supervisory system that observes the operating state and health condition
of the optical network or equipment in real-time [29]. In general, most optical equipment include a
monitoring module that can record certain parameters, such as bias current, environment temperature,
input/output power, unusable time. In addition, lots of OPMs and optical channel monitors (OCMs)
are deployed over the entire optical network that are used for estimation and acquisition of different
performance parameters of optical signals and optical components [30]. The monitoring system is
indispensable in ensuring reliable network operation and fault-aware proactive maintenance.

OTDR: an optical time domain reflectometer (OTDR) is an instrument used to characterize a fiber
cable and locates events and faults along a fiber and is typically deployed in optical networks. An OTDR
launches a series of optical pulses into the fiber to be measured [31]. Various events on the fiber generate
a Rayleigh back scatter that returns to OTDR. The strength of scattered or reflected light is gathered
and integrated as a function of time, and plotted as a function of fiber length. OTDR provides detailed
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information on the localization and overall condition of fiber, connection, and splice loss, among other
defects [32]. Thus, OTDR is often used to precisely detect faults in a fiber link, especially for searching
for and locating the break point.

3 Studies on Machine Learning-based Failure Management in Optical Net-
works

In this section, we reviewed the studies on ML-based failure management in context of optical networks,
including alarm analysis, failure prediction, failure detection, failure localization, failure identification,
and failure magnitude estimation:

3.1 Alarm Analysis

In optical networks, alarm is the key indicator for failure management and will be reported whenever
something goes wrong. In optical networks, alarm analysis includes alarm compression, trivial alarm
identification, alarm prediction, alarm correlation analysis, and alarm root cause identification, as sum-
marized in Table 1.

In recent years, some techniques explored the alarm prediction and root cause analysis in optical
networks. Alarm prediction focuses on forecasting the probability of alarms in advance to make active
defense. Root cause analysis concentrates on mining the correlation among multiple alarms for discovering
the root cause and performing fault localization to ensure service level agreement (SLA). In [33], Y. Zhao
et al. proposed an alarm prediction scheme using ANN, the input of which was the performance data and
alarm type, and the output was the probability of whether the alarm would occur in the next 15 minutes.
Then, they continued to study the impact of data imbalance on alarm prediction [34]. To balance the
data set for mean distribution, the total data volume was reduced by random deletion, and the amount
of alarm data was increased by using limited Gaussian noise (LGN). The experimental results showed
that data enhancement significantly improved the performance of dirty-data-based alarm prediction.
Besides, a series of alarm prediction schemes were widely studied with different learning algorithms and
architectures, such as random forest [35], GAN [36], transfer learning [37], and coordination between
control layer AI and on-board AI [38].

In addition to alarm prediction, alarm root cause analysis-enabled failure localization has also attracted
wide attention. In [39], the alarm data were transmitted to network management system and analyzed by
LSTM to locate the fault. The output was the possible fault position with the probability from 0 to 1 based
on fuzzy theory. In [40], an optical network fault localization method was explored using deep neural
evolution network (DNEN) with large-scale alarm sets, which can make full use of the global searching
ability of DNEN to perform the high-accuracy and low-latency fault localization. In [41], concept of
knowledge graph (KG) was introduced to build an easy-to-understand alarm knowledge system for alarm
relation reasoning, as shown in Fig. 5. Meanwhile, graph neural network (GNN) was used to recognize
the root cause by inferring the relationship between alarms. Alarm KG not only visualized network alarm
knowledge, but also located network faults by knowledge reasoning. However, how to build an alarm KG
automatically is not an easy task. In [42], an automatic construction of KG was proposed for fault
localization by extracting the relationship between alarms and faults from the semi-structured data and
structured data. More details of KG-based alarm analysis for fault localization can be found in [43].

With the expansion of network scale, massive amounts of alarms come along with emergency of failures,
which also brings great challenges to network management. In [44,45], the problems of alarm compression
and alarm correlation analysis were studied. The combined K-means and ANN were used to evaluate the
alarm importance quantitatively and determine alarm weights. The a-priori was modified to enhance the
mining efficiency and improve the alarm compression rate, where alarm data were significantly compressed
by 60% to 90%. In addition, massive false or nuisance alarms distributing in different layers with different
severity degrees, and thus it is difficult to identify the alarm root cause among these redundant and
intricate alarms. To overcome this problem, the representation of alarm data was realized by using
BERT (Bidirectional Encoder Representations from Transformers) as the pre-training model to vectorize
the alarm context and using Transformer to realize alarm root cause identification [46]. The alarm
representation based on context vectorization could retain the multi-dimensional original information
and facilitate the model training. Compared with the traditional symbol representation, the experimental
results showed that the BERT could extract knowledge and read the alarm manual intelligently. Moreover,
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Abstract: A fault localization method for optical networks using knowledge graph and graph neural 
network is proposed. Experimental demonstration shows that the proposed method is effective in 
automating the localizing of optical network faults.   

 
1. Introduction 

As the underlying infrastructure bearing network traffic, the optical network has high requirements for network 
reliability.  A single network fault (e.g., node or link failure) may cause Quality of Service (QoS) degradation or even 
service interruption leading to loss of gigabytes of data. Thus, once network faults occur, network operators need to 
accurately locate the source of fault and then fix it as soon as possible. However, due to the scale of the optical 
networks, identifying the fault location is very difficult. When a single node or link fails, the Network Management 
System (NMS) receives a series of alarms reported by multiple devices. Even if these alarms include location 
information, it is difficult to identify the root alarm in the alarm storm.  

Prior studies have been explored methods to identify fault location. Failure localization method based on the case 
database can accelerate failure location identification by simplifying the process of failure localization [1]. However, 
the proposed method relies on alarm data. The accuracy of fault localization will vary on how comprehensive the 
collected data is. Machine learning (ML) is introduced into optical networks gradually due to the better fitting 
performance [2]. Ref. [3] proposed a deep learning-based method for soft-failure detection. Nevertheless, the model 
is neither systematic nor generalized, meanwhile it is time-consuming to retrain models in different scenarios. 

This work introduces the concept of knowledge graphs (KGs) for optical network alarm relation reasoning. KGs 
help to form an easy-to-understand alarm knowledge system. We also report verification experiments showing the 
alarm relation in the KGs through real network data. A graph neural network (GNN) is trained to find the root alarm. 
The experimental results show that the combination of alarm KGs and GNN can locate faults with promising accuracy. 

2.  Optical Network Fault Localization Method 

2.1. Knowledge Graph for Alarms 

Recently, KGs have been an active research topic in the field of Natural Language Processing (NLP). KGs represent 
knowledge bases (KBs) as a graph whose nodes represent entities, and edges represent relations between entities. A 
triple (entity-relation-entity) can reflect the relationship between events. In optical networks, there is a strong 

 
Fig. 1 (a) A subgraph of the alarm KG; (b) alarm data in optical networks, (c) fault location based on alarm KGs. 
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Figure 5 Knowledge graph (KG)-enabled root cause analysis based on alarm data: (a) a subgraph of the alarm KG, consisting

of three main types of entities (fault entities, root alarm entities, and derived alarm entities) and two types of relation edges in the

graph; (b) alarm data in optical networks; (c) fault location based on alarm KGs [41].

the vectorized alarm information were used to identify the root cause through transformer encoder with
satisfactory accuracy.

Table 1 Summary of ML-based Alarm Analysis

Task Algorithm Description Literature

Alarm prediction

ANN + Random forest
Predicting the probability of

an alarm occurrence in future.

2018OE [33]

2019OE [34]

2019ACP [35]

GAN
Alarm prediction with data

augmentation based on GAN
2020ICNC [36]

Transfer learning

Concurrent alarm

prediction with fewer data,

less training time, and better efficiency.

2020ACP [37]

On-board AI
Supporting control layer AI and

on-board AI simultaneously based on SDON
2020JOCN [38]

Alarm root cause analysis

LSTM
Alarm root cause

analysis-enabled failure localization
2019CC [39]

DNEN
Accurate fault localization

with large-scale alarm sets using DNEC
2019OFC [40]

Knowledge Graph + GNN

Construction of alarm

knowledge graphs for alarm

relation reasoning and fault localization

2020OFC [41]

2020OFC [42]

2021JLT [43]

BERT + Transformer

Using BERT to vectorize

alarm context and using a transformer

to identify the alarm root cause

2021ECOC [46]

Alarm compression K-means + ANN

Alarm data were compressed by

60% to 90% by evaluating the

alarm importance and weights

2018OECC [44]

2019Access [45]

3.2 Failure Prediction

Most failure management schemes can only passively protect the optical network and minimize damage
only after a failure occurs. Therefore, services are interrupted owing to the time delay of protection and
recovery. Thus, failure prediction as a proactive approach is required for early-warning and proactive
protection, which aims at preventing disruption in advance. Typically, failure prediction always needs
to monitor the operation state and health condition of the lightpath and optical components, and then
proactively switch to a backup link before failure occurs.

First, for the lightpath, a Gaussian process classifier was adopted to predict the failure probability of
single link [7] that was based on historical data extracted from the examined network using a graph-
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metropolitan area network in a mesh topology. In the control plane, a central controller 
collects the operation and maintenance data from all WDM nodes and then analyzes the data 
before providing instructions. 

 

Fig. 3. DES-SVM method predicting an equipment failure and the risk-aware protection 
algorithm preventing data loss in SDMAN. 

The proposed method operates in the controller using the operation data to train the 
prediction model and predict an equipment failure. If the controller identifies a potential 
equipment failure by the DES-SVM prediction method, it initiates protection measures in 
advance to calculate the best approach to protecting the services. Next, the controller sends 
control messages to all WDM nodes. These nodes switch the services to a safe path to prevent 
data loss. The main procedure of the DES-SVM prediction method is shown below. 

Step A. The controller collects data and selects the indicators. In the SVM algorithm, we 
use features to form vector x in each data item. These features are the value of the indicators. 
Note that each indicator might have multiple records, thus, each indicator might correspond to 
multiple features. According to the basic principle of SVM, features should be related to the 
equipment state in order to distinguish between equipment failure and normal. Feature 
selection directly influences the model accuracy, so it is important to select most related 
indicators to ensure the accuracy of the final result. As Fig. 4 describes, we can use the 
classification accuracy trained by a single indicator to get the relationship between this 
indicator and equipment failure. If an indicator is closely related to the equipment failure, the 
change of this indicator will affect the equipment failure state obviously. 
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Figure 6 Failure prediction of OTN equipement using SVM [50].

based correlation heuristic. A high overall accuracy—99% for a network load of 20 Erlangs—was achieved
without any probing or other monitoring equipment. In a broad sense, the quality of transmission (QoT)
estimation and bit error rate (BER) estimation could be regarded as assistive technologies for lightpath
failure prediction. Estimating the lightpath QoT prior to deployment is essential for the optimized design
and planning of optical networks. ML models have been extensively deployed for QoT estimation. In
comparison with analytical models, ML models have exhibited superior robustness to parameter inac-
curacies and lower computation complexity [47]. In addition to QoT, BER is the other key factor for
straightforward system performance representation. In [48], a näıve Bayes was used for BER degrada-
tion prediction based on real-time state-of-polarization (SOP) monitoring with low complexity, minimal
storage, and high speed. In [49], a framework of proactive maintenance was designed for fiber diagnosis.
Here, a CNN was adopted to estimate the bend state of remote fiber; protection switching was executed
as soon as fiber degradation was detected with no service disruption or bit loss.

The optical transport network (OTN) board is an important optical equipment that encapsulates the
client signal in the corresponding frame format and transmits it transparently and efficiently. It primarily
comprises an optical transponder unit, cross connection unit, optical multiplex/demultiplex unit, optical
amplifier, and optical/electrical supervisory channel. However, the failure OTN equipment may cause
massive service interruption. In connection with the OTN equipment, we proposed a series of schemes
for failure management. In [50], a double exponential smoothing (DSE) algorithm was used to predict
the trend of operating state parameters of OTN equipment, and SVM was used to determine whether it
would fail at least one day in advance, as shown in Fig. 6. This is one of the earliest studies utilizing ML
for failure prediction in optical networks. In [51], a bidirectional gated recurrent unit (BiGRU)-based
adaptive failure prediction was proposed in terms of the temporal characteristic of equipment state data.
In addition, principal component analysis (PCA) was used to compress data dimensionality to reduce
learning complexity. Subsequently, BiGRU was used to capture the bidirectional temporal correlation
between low-dimension data. Since the learning model is usually a black-box model, it is difficult to
analyze its internal mechanism and determine the principal causes that induce failure. Thus, in [52,53],
an attention mechanism-driven LSTM was studied for failure prediction accompanied by simultaneous
possible cause identification. Besides, the above-mentioned studies only directly predict whether failure
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would occur, but without any uncertainty analysis. To solve this remaining issue, a Bayesian neural
network (BNN) was leveraged to validate the prediction results, i.e., provide a quantified uncertainty
value obtained from information entropy [53].

Closely related to failure prediction, several studies exist on forecasting the lifetime of optical com-
ponents (primarily for lasers). This task is a more elaborate management process conducted on aging
devices for its entire lifetime. Conventional aging tests are expensive, and have long test periods and
low accuracy. In practice, all optical materials degrade over time, particularly in high average power
or intensity optical systems. In [54], a Bayesian lifetime analysis approach was developed for optical
materials by performing maximum a posteriori probability (MAP) estimation. Accurate and repeatable
extrapolation results were obtained in S-on-1 laser-induced damage fatigue experiments. Besides, in [55],
an ANN-based lifetime prediction of 1550 nm DFB laser was presented to output the possible mean-time-
to-failure, which improved prediction error from 3.8∼17 years to 1.12 years. Based on synthetic data and
real laser datasheet including different operating conditions, this scheme effectively reduced the time and
cost of aging tests, as summarized in Table 2.

Table 2 Summary of ML-based Failure Prediction

Object Algorithm Data Description Literature

Lightpath

Gaussian process
Historical data: network state

and past failure incidents

Predicting the failure

probability of a single link
2018JOCN [7]

ANN vs. GN model System parameters

Performance comparison

between ML and GN model for

QoT estimation in WDM system

2021JOCN [47]

Näıve Bayes State of polarization (SOP) data
Degradation prediction

of pre-FEC BER based on SOP
2018ECOC [48]

Fiber CNN Constellation data from receiver
Estimating the bend

sate of remote fiber
2020JLT [49]

OTN equipment

DES + SVM

Historical data:

operating state parameters

monitored from OTN equipment

DES for operating state

prediction and SVM used to

predict fault one day in advance

2017OE [50]

BiGRU + PCA

PCA for data dimension

reduction and BiGRU for temporal

data-driven failure prognostics

2020JOCN [51]

Attention

mechanism-driven LSTM

Attention mechanism-driven

LSTM for fault prediction and

potential fault cause identification

2021OFC [52]

2021JOCN [53]

Laser

Bayesian statistics
Laser-induced damage

threshold fatigue data

Lifetime prediction

by analyzing LIDT fatigue data
2021OE [54]

ANN Monitored laser parameters
Predicting the

mean-time-to-failure of a laser
2020OFC [55]

3.3 Failure Detection

In contrast to failure prediction, failure detection involves triggering the alarm and examining whether
a failure really occurred, when the deterioration of the monitored object reaches a certain level. In
optical networks, failure detection primarily focuses on the lightpath and optical components. For failure
detection in the lightpath, recent studies have adopted two different approaches: one is based on the
digital coherent receiver and the other on the OSA, as summarized in Table 3.

In digital coherent detection systems, instead of the optical spectrum, the digital spectrum of received
signals can be obtained from the coherent receiver. Moreover, with the assistance of an advanced DSP
module, it identifies the rich link information and monitors multiple optical performance parameters.
In [56, 57], a digital spectrum-assisted soft failure detection (SFD) was explored and a dual-stage SFD
scheme was proposed, as shown in Fig. 7. Based on the extracted information from the digital spectrum
without additional hardware, SVM was leveraged to detect soft failure caused by channel interference,
filter shift, filter tightening, and increased ASE noise, and a false positive rate of 0.42% was achieved for
SFD at a reasonable level of complexity. Accordingly, they further proposed an evolved digital spectrum-
based SFD solution [58]. In this study, the fast Fourier transform method was replaced with Welch’s
method to reduce computational complexity by 46% and save storage cost by 99% for digital spectrum
calculation. In addition, in [59], a generative adversarial network-based SFD was achieved by electrical
spectrum analysis that was directly obtained from the coherent receiver. In this study, by reconstructing
the spectrum data from the original space to latent space, only normal data were required for training and
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Fig. 3. (a) The illustration of the proposed digital spectrum area calcula-
tion method; (b) the workflow of extracting digital spectrum feature for a
polarization-division-multiplexing (PDM) coherent transmission system.

SpecArea[−Bf/2, 0], SpecArea[0, Bf/2], need to be
calculated to extract digital spectrum features. Note that
the filter center is always assumed to be aligned with the optical
signal center when we calculate the spectrum areas of left
and right filter bands. This is very natural because we do not
know whether FS occurs before SFD and SFI. Given a complex
sampling signal r(n) = I(n) + jQ(n), the spectrum area
between frequency f1 and f2 can be calculated as expressed in:

SpecArea[f1, f2] =
∑

f∈[f1,f2]

‖FFT (r(n))‖, (2)

where ‖·‖ denotes the modulus of a complex number. When
the spectrum areas have been calculated, five digital spectrum
features can be obtained as depicted in:

SpecAreas = SpecArea

[
−Bs

2
, 0

]
+ SpecArea

[
0,
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2

]
,

(3)
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, 0

]
+ SpecArea

[
0,
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2

]
,

(4)
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∣∣SpecArea
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0, Bs

2

]
− SpecArea

[
−Bs

2 , 0
]∣∣

SpecAreas
,

(5)

Asymf =

∣∣∣SpecArea
[
0,

Bf

2

]
− SpecArea

[
−Bf

2 , 0
]∣∣∣

SpecAreaf
,

(6)

SARs,n = 10log10
SpecAreas

SpecAreaf − SpecAreas
. (7)

The digital spectrum features SpecAreas, SpecAreaf are
proportional to the power in signal and filter band. Asyms,
Asymf are related with the spectrum symmetry in signal and
filter band, and they will increase when the spectrum symmetry
is deteriorated. In addition, the feature SARs,n is used to
estimate the noise level of a received optical signal.

Fig. 3(b) depicts the workflow of extracting digital spectrum
feature for a PDM coherent transmission system. The output
digital signals of ADCs are re-sampled to 2 samples per sym-
bol as most of coherent demodulation DSP algorithms do. In
most of coherent receivers, resampling means upsampling since
overspecified and thus more costly ADCs are required for down-
sampling. Note that digital spectrum information will not be lost
by upsampling to 2 samples per symbol while downsampling
done incorrectly may bring slight spectrum information loss.
After re-sampling, digital spectrum features are extracted from
the complex digital signals of X and Y polarization states,
respectively. Then the features are averaged to mitigate the
influence of imbalance in X and Y polarization states.

III. ALGORITHMS FOR SOFT-FAILURE DETECTION

AND IDENTIFICATION

In a stable-designed optical network with large operating
margins, failures are always infrequent and thus collected failure
samples will be far fewer than normal samples. Therefore, SFD
can be regarded as an anomaly detection problem in ML field,
and it prefers unsupervised or semi-supervised algorithms. In
general, anomaly detection techniques are based on nearest
neighbor, clustering, classification and statistical models [17].
Although nearest neighbor and clustering based anomaly de-
tection algorithms are naturally unsupervised, they usually face
the bottleneck of high computational complexity [6], [17]. As
a contrast, classification and statistical model based anomaly
detection algorithms can have good performance with low
complexity. Typically, a Gaussian distribution based anomaly
detection algorithm has linear computational complexity in data
size as well as input features. But its detection performance may
degrade when the assumption of Gaussian distribution is not
fully satisfied. So it is suitable to run as the first-stage SFD for
capturing the whole suspected link anomaly in optical nodes all
the time. At the second-stage SFD, an accurate semi-supervised
OC-SVM with extra digital spectrum information is employed
to reduce false alarms. Thus, prompt and accurate SFD can be
realized with less monitoring and processing overhead by using
this dual-stage SFD structure.

Unlike SFD, SFI is a multi-class classification problem and
supervised ML classification algorithms are required. Since
large failure data sets are hard to acquire, the algorithms that can
work well even with small data sets such as SVM are preferred.
So SVM is chosen to perform the SFI task in this study.

A. Gaussian Distribution Based Anomaly Detection

Gaussian distribution based anomaly detection algorithms
have been widely used in anomaly detection problems [17], [18].
When different features are independent, Gaussian distribution
based anomaly detection algorithms have linear computational
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Figure 7 ML-based soft failure detection exploiting digital spectrum information in coherent receiver [56].

95% accuracy was achieved. Following this, S. Varughese et al. successively adopted SVM [60] and an
autoencoder [61] for failure detection, utilizing readily available receiver DSP features to detect multiple
link failures, including inferior laser, reconfigurable optical add-drop multiplexer (ROADM) filtering, low
OSNR, and adjacent-channel crosstalk.

In addition, BER degradation can represent the lightpath state intuitively. Thus, BER detection is
another important tool for failure detection. In [62], a BER anomaly detection algorithm was proposed to
detect excessive BER within network nodes. It could trigger the affected service re-routing and minimize
the effect of failure. Moreover, in [63], several ML algorithms were studied for SFD based on continuous
monitoring BER values, called BER anomaly detection. Comparing binary-SVM, random forest (RF),
multiclass SVM, and single-layer neural network, the tradeoff between accuracy and complexity was
explored, and accuracy above 98% was consistently obtained.

For OSA-based failure detection methods without photoelectric conversion, all the analyzing and pro-
cessing are directly executed in the optical domain. In optical networks, most monitors are based on
optical spectrum measurement and lots of information can be obtained from optical spectral data, in-
cluding power, OSNR, bandwidth, wavelength, spectral shape, and filtering effect. Learning from the
optical spectrum, L. Velasco et al. proposed a series of schemes to detect filter-related failures, i.e., filter
shift and filter tight [12,64,65]. With the help of ML algorithms, the asymmetrical and rounded-edge fea-
tures of abnormal spectra could be distinguished from normal spectra. These schemes took the advantages
of ML’s powerful recognition ability to reduce the requirement on instruments, allowing coarse-resolution
and cost-effective OSAs.

Furthermore, for optical components, fiber is the primary research object in terms of failure detection.
In [66], a proactive fiber damage detection scheme was realized through DSP in a coherent receiver.
Learning from the features of monitored SOP, a näıve Bayes classifier was used to detect multiple fiber
damages, including bending, shaking, small hit, and up and down events, with 95% reliability. In [11],
LSTM was applied for multitask learning to detect fiber reflective faults generally occurring in connec-
tors or mechanical splices. Learning from the noisy data collected by OTDR and a sequence of signal
power levels, LSTM detected reflective events with 93% accuracy, outperforming the conventional OTDR
analysis technique.

In addition to fiber, other optical components were also studied with respect to failure detection, in-
cluding OTN equipment, optical modules, and laser. In [68], OTN failure detection was performed with
extremely imbalanced data using an autoencoder. As generally known, the monitored data collected from
practical networks always present imbalanced characteristics. Thus, the failure data were relatively rare,
which was a big challenge for training ML algorithm. The autoencoder could map the imbalanced data
from original to latent space, where the features of normal and abnormal data could be easily distin-
guished, thereby significantly reducing the its dependence on failure data (<3%). In [69], the concept
of cognitive fault management was introduced and an initial framework was designed. By monitoring
the received optical power levels, ML was employed for autonomous failure detection. Compared with
conventional fixed threshold-triggered methods, it achieved superior performance in terms of accuracy
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and response time. In [70], laser degradation detection was studied to enhance laser reliability. Learning
from synthetic historical data, LSTM was adopted to predict its remaining working life and recognize
several laser degradation modes.

Moreover, more and more researchers focus on cognitive failure management. Cognitive failure manage-
ment integrates cognitive activities (such as decision-making, identification, etc.) into failure management
by observing the network state, and uses the acquired knowledge to take action. In cognitive failure de-
tection, a self-taught anomaly detection with hybrid unsupervised and supervised ML was proposed,
which used unsupervised density-based clustering algorithms to learn abnormal network behavior [71].
It eliminated the dependence on a priori knowledge of abnormal network behavior and could potentially
detect unforeseen anomalies. In [72], a hybrid ML method was proposed for collaborative failure man-
agement in multi-domain optical networks. By analyzing the data patterns, online anomaly detection and
soft failure localization were realized. The use of federated learning architecture enabled multi-domain
data to effectively share knowledge in the case of high imbalance, and achieved a soft failure detection
rate higher than 90%. In [73], a functional module called Security Operation Center (SOC) was put
forward from the perspective of optical network failure management cognition and automatic security
management. The experimental results showed that dimensionality reduction and unsupervised learning
techniques improved the accuracy of attack detection and reduced the run time.

Table 3 Summary of ML-based Failure Detection

Object Algorithm Data Description Literature

Lightpath

Gaussian

distribution

OC-SVM

Digital spectrum from receiver
Low-complexity dual-stage

soft-failure detection

2020JLT [56]

2020OE [58]

GAN Electric spectrum from receiver

Soft-failure detection

for long-haul transmission

systems with only normal data

2021OFC [59]

One-class SVM

Autoencoder

Available adaptive filter

coefficient in DSP

Using readily available

receiver DSP features to

detect multiple link failures

2019OFC [60]

2020OFC [61]

Binary-SVM

Finite state machine

BER traces monitored

from receiver

Anomaly detection was realized

by monitoring continuous BER values

2018OFC [63]

2017JLT [62]

Filter
Decision tree

SVM
Optical spectrum from OSA

Optical spectrum-based

filter-related failures

(filter shift and filter tightening)

2018OFC [65]

2019JLT [12]

Fiber

Näıve Bayes
SOP data obtained

from the receiver

Multiple fiber damages detection

using monitored SOP features
2017ECOC [66]

LSTM Noisy data collected by OTDR
Reflective fault detection based

on monitored data obtained by OTDR
2021JOCN [11]

CNN OPM data and eye-diagram
Eavesdropping detection

based on eye diagram and OPM data
2022OFT [67]

OTN equipment Autoencoder
Historical performance

monitoring data

Anomaly detection with

extremely imbalanced data
2021OFC [68]

Optical module ANN Received optical power levels

Fault detection based on isolated

optical power level abnormalities

across various network nodes

2017JLT [69]

Laser LSTM Synthetic historical data
Several laser degradation

modes detection
2019ICTON [70]

3.4 Failure localization

After failure detection, immediate failure localization is of paramount importance for failure recovery. In
[74], the localization of irregular WSS was inferred by power spectrum density (PSD) when filter shift oc-
curred in different localizations of the fiber link. When failure occurred in different localizations, the PSD
presented different distortion degrees, and the frequency response of the adaptive filter would converge
to corresponding states that was used to spot the irregular WSS. In [75,76], a network-wide soft failure
localization framework was designed and an ANN-based approach was proposed with SDN streaming
telemetry, where training data were collected from telemetry and stored in a time-series database, as
shown in Fig. 8. Multiple cases, including amplifier failure localization, fiber failure localization, and
transponder failure localization, were comprehensively studied in two different topologies.

In optical networks, QoT representing system performance can be degraded by several effects. Sup-
ported by GNPy tool, QoT can be easily calculated and observed in real time. In [77], a soft failure
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case, anomalies are detected in the OSNR at the input of all
transponders whose lightpaths traverse the faulty device. As
these transponders are downstream from the faulty device, they
receive a lower priority, while the faulty device receives a higher
priority.

C. ML-Based Soft-Failure Localization

Figure 1(b) presents the ML-based framework evaluated in this
paper. The failure localization workflow starts by creating a
snapshot mirror of the optical network using the current SDN
information base, including physical topology (topology mir-
ror), routed lightpaths (lightpath mirror), and telemetry data
(telemetry mirror). This information is sent to a failure gener-
ation simulator, which produces synthetic telemetry data for
all scenarios and considers any possible failure in the network
as inputs to train the ANN used for failure localization. The
training phase must be carried out wherever there is a change
in the network configuration, such that the network mirror
ceases to represent a desirable network state. This can occur,
e.g., upon lightpath activation or deactivation or protection
switching. The monitored devices send telemetry data to the
SDN STC, which stores the collected data in a time-series
database. After training, the ANN module is continuously
fed with the telemetry data from the time-series database to

localize potential network failures. In practical scenarios, the
time-series database also communicates with the network
mirror to feed telemetry data for improving signal propagation
models and achieving more reliable mirroring.

In partial-telemetry scenarios, not all telemetry data are
available for failure localization. Certain devices may not
implement SDN telemetry, and others may become nonre-
sponsive. If nonresponsive devices stop sending telemetry
data to the SDN STC for a certain period of time, the SDN
controller can request ML retraining. As the neural network
size depends on the number of inputs, retraining optimizes
performance. In partial-telemetry retraining, the topology
and lightpath mirrors remain the same while missing data are
removed from the telemetry mirror. As we will see later, retrain-
ing can be carried out in less than 2 min, even for large-scale
networks containing thousands of components.

Figure 2 shows the signal and noise power models used to
generate synthetic telemetry data in simulations. We neglect
nonlinear effects in the fiber power and noise model and
consider a relatively low per-channel launch power. The
per-channel launch power is kept constant by a feedback
control loop involving a wavelength-selective switch (WSS)
and an optical channel monitor (OCM). The power model
keeps track of the signal and noise powers and calculates the
OSNR at the end of the link. Reconfigurable optical add-drop

Fig. 1. Network-wide soft-failure localization frameworks. (a) Direct soft-failure localization. An STC receives the telemetry data and stores it
in a time-series database. The soft failure is localized using if-else rules based on a dependence tree. (b) ML-based soft-failure localization. An STC
receives the telemetry data and stores it in a time-series database. In parallel, a mirror of the telemetry data is constructed using synthetic signal and
noise power models. In the mirror, all possible failures are generated and used to train a neural network. The soft failure is localized by applying the
received telemetry data to the neural network.

Fig. 2. Synthetic telemetry generation models. (a) Optical signal and noise power model. The optical per-channel launch power is maintained
constant by a feedback loop involving a WSS and an OCM. (b) ROADM, assuming a broadcast and select architecture.

Figure 8 ML-based network-wide soft-failure localization frameworks with telemetry [76].

localization was realized by analyzing QoT-related parameters. When failure occurred in WSSs or ED-
FAs, the value of GSNR would decrease owing to noise figure increase, launch power decrease, fiber cut,
or wavelength shift of WSSs. Based on the evolution of GSNR over time, the cause can be identified and
failure can be located accordingly.

Based on the optical spectrum, two failure localization methods were proposed to figure out WSS
misconfigurations: one used ROADM with OSA and the other used an optical supervisory channel [78].
In [79], relying on specifically designed optical testing channel (OTC) modules and widely deployed
OSAs, the optical parameters were retrieved as training data of ML in the network controller. During
commissioning testing and lightpath operation, soft failures caused by laser and filter could be identified
and localized with an accuracy above 90%. The accuracy of this method was further enhanced to cope
with the filter cascading problem in [12,65], where the captured OSNR values from the optical spectrum
were used to reveal the location of failure among nodes 1-4.

In [80], a network Kriging (NK)-based scheme was explored for failure localization using the infor-
mation from lightpaths. As a mathematical framework, NK was used to correlate physical parameters
with failure elements to unambiguously localize the fiber link. In [7], a GP-based link failure localization
method was proposed for service providers to reduce the network cost without using lightpath probing
or other monitoring equipment. The proposed method comprised two phases: failure detection over the
entire network topology. and calculation of the failure probability of each link to spot the suspected link,
in the event of failure. In general, failure localization can be divided into network-level and lightpath-level
cases. Optical network is composed of multiple optical links and optical nodes. Therefore, network-level
failure localization includes not only all the links but also nodes, consisting of multiple lightpaths. While
lightpath-level failure localization only involves the components (like transceiver, fiber link, amplifier,
and filter) belonging to its own lightpath.

For fiber defect localization, OTDR is the most useful tool. Combining LSTM with OTDR, a reflective
fiber fault localization method was studied to detect the reflective events, including fiber mismatch,
fiber breaks, angular fault, dirt on connector, and micro-bends [11]. This combination of methods
achieved a higher detection probability and localization accuracy. In addition to OTDR-based methods,
another interesting approach without other hardware or extra DSP modules was proposed for fiber
degradation localization, where the loss profile and passband narrowing could be obtained in receiver-
side DSP using the classic digital backpropagation (DBP) algorithm [27]. This approach was based
on the learning of backpropagation with complex-valued finite impulse response (FIR) filters to depict
the loss conditions over the entire transmission link, which could be used for fiber anomaly detection
and degradation localization. Subsequently, T. Sasai et al. extended this method to monitor more fiber
parameters, longitudinal loss and dispersion profiles along a multi-span link, which was useful for accurate
and convenient fiber degradation monitoring and failure localization [81]. To save space, these works
about failure localization are summarized in Table 4 with the following failure diagnosis together.
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method (average). Moreover, the authors of [31] introduced
dimension reduction into the model of anomaly detection. At
first sight, the dimensionality reduction methods mentioned
in [31] are similar to the attention mechanism mentioned in
this paper, and they all focus on a few features or a few features
synthesized of the dataset. However, the use of the dimension
reduction method is aimed at improving the accuracy and run-
ning time of the model, focusing on the data processing before
data input into the model. Generally, the dimension of data
is reduced after dimension reduction. However, the attention
mechanism is an advanced technique that allows the model to
dynamically pay attention to only certain input features that
help in performing the task effectively, so the dimension of data
before entering the model does not change, and its purpose is
to identify the potential failure causes.

In this paper, based on our previous work [30], we further
study and expand the principle of this work to identify the
potential causes of failure of optical equipment by a more
comprehensive description of the attention mechanism. In
particular, we study the attention weight distribution of two
different types of attention mechanisms (i.e., additive attention
and dot-product attention) to confirm the highest-relevance
input feature on equipment failure; at the same time, to make
full use of the time-series information of the optical equip-
ment, we consider not only the forward but also the backward
input information of the equipment, and use bi-directional
LSTM (BiLSTM) to perform failure prediction. Moreover, the
BiLSTM structure for failure prediction is described in detail.
Here, BiLSTM is used to perform failure prediction, and the
aim of the attention mechanism is to identify potential causes
of failure. Experimental results show that the potential failure
cause identification scheme based on the attention mechanism
confirms that the highest-relevance input feature on equipment
failure is the average value of input optical power, which may

be caused by disconnection of the receiving port of the board or
fiber cut of the adjacent link; the next highest-relevance feature
is the minimum value of the environmental temperature,
which may be caused by a broken fan or overheated chip. In
addition, the proposed scheme achieves good failure prediction
performance, and the predicted F1 score is higher than 97%.

2. OPERATING PRINCIPLE

Figure 2 shows a schematic of using the attention mechanism
to identify potential causes of failure of optical equipment. The
proposed scheme can be deployed in a software-defined metro-
politan area network, which is a mesh topology constructed by
OTN nodes. First, the physical equipment layer is responsible
for reporting the performance data of network equipment
operation to the controller. Second, data pre-processing, model
training (BiLSTM with the attention mechanism), and model
decisions (including failure prediction and identification of
potential causes of failure) are carried out in the controller. As
can be seen from Fig. 2(a), the BiLSTM with the attention
mechanism model includes an input layer, BiLSTM layer,
attention mechanism layer, and output layer. The input fea-
tures of the model and the output of the BiLSTM hidden layer
are the query and candidate states of the attention mechanism
layer, respectively. Moreover, the calculation of the attention
weight is an important part of the attention mechanism.
Figure 2(b) shows the process of calculating the attention
weight, which is obtained by calculating the relevance between
the query state and candidate state. Finally, the controller issues
control messages based on the result of the model decision.
More specifically, if a potential failure risk of the equipment
is predicted, the high-relevance input features on equipment
failure can be confirmed based on the attention mechanism,
thus finding potential causes of failure and then taking the

Fig. 2. Potential failure cause identification using additive attention and dot-product attention for optical networks.

Authorized licensed use limited to: BEIJING UNIVERSITY OF POST AND TELECOM. Downloaded on March 08,2022 at 16:31:03 UTC from IEEE Xplore.  Restrictions apply. 

Figure 9 Potential fault cause identification using attention mechanism [85].

If failure really occurs, failure identification and failure magnitude estimation will be performed, which
is crucial for troubleshooting and failure maintenance. Failure identification mainly includes failure
type identification and failure cause identification. Recently, various failure identification schemes were
explored in optical networks, as summarized in Table 4.

In general, failure identification has always been simultaneously realized with failure detection in most
studies. In electric spectrum-based failure detection schemes [56, 58], in the event of failure, the causes
could be identified by ML algorithms (SVM, CNN, or ANN). Learning from digital spectrum information
in the coherent receiver, multiple impairment deteriorations could be recognized by ML-embedded DSP,
including filter shift, filter tightening, filter-cascaded effect, increased ASE noise, nonlinearity, channel
crosstalk, and fiber length fluctuation. For the faults caused by multiple soft failure causes, the cause
identification of optical link soft failure was realized based on power spectrum density [82]. Especially, if
multiple soft failure causes coexist, based on the probability information of output causes of CNN output
layer, the proposed scheme can identify the main soft failure cause. In optical spectrum-based meth-
ods [12, 65], optical spectral data were directly collected from OSA to train ML algorithms for failure
identification, where filter-related effects, laser shift, and OSNR degradation could be effectively identi-
fied. Apart from spectral methods, BER monitoring was employed to anticipate connection disruption.
Considering pre-FEC BER and received power together, several potential failure elements were analyzed
in the centralized network controller, including signal overlap, tight filtering, gradual drift, and cyclic
drift [62]. Based on DSP in the receiver, S. Varughese et al. employed the readily available adaptive
filter coefficient to identify impairments of low OSNR, nonlinearity, inferior lasers, faulty ROADM, and
inter-channel interference using SVM [60] and an autoencoder [61], respectively.

The above-mentioned schemes primarily identified the possible failure types; additionally, certain stud-
ies attempted to determine which specific elements induced failures in the optical network infrastructure,
i.e., failure cause identification. In ML algorithms, NNs are the most widely used option for failure
management. However, the black-box characteristic makes it difficult to interpret its operating principle
and analyze feature importance in failure, which causes serious difficulties for the operator. To overcome
this issue, XGBoost was introduced to conduct failure cause identification of OTN boards in optical
networks [83]. In contrast to NNs, XGBoost is an integrated model comprising several base learners
that make XGBoost interpretable and decomposable. By analyzing the internal structure of XGBoost,
five features were revealed as the most possible failure causes, and, with the assistance of SHAP, these
potential causes were ranked in turn by feature importance and correlation [84]. In addition, to overcome
the interpretability of NN, the attention mechanism technique was introduced to drive DL, enabling the
model to dynamically focus on certain input features [52]. With the help of attention mechanism, LSTM
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not only detected failures accurately, but identified failure causes, as shown in Fig. 9. According to the
attention weight distribution, the two highest-relevance features for equipment failure were confirmed:
the average value of input optical power and the minimum value of the environmental temperature. Thus,
relevant information for failure diagnosis and maintenance was obtained [85].

In failure analysis, failure magnitude estimation is another important task required to quantify specific
failure effects and understand failure severity. The failure magnitude is defined as the difference between
the ideal and actual value of the estimated object. In [21,79], a laser drift estimator, filter shift estimator,
and filter tightening estimator were simultaneously deployed to measure different magnitudes. In [58],
mutual information between features and failure magnitude were obtained by a digital spectrum-based
solution. Compared with real failure magnitudes, the mean squared errors (MSEs) of estimated failure
magnitudes for five soft failures were all <0.4. In [79], ANN and Gaussian process regression (GPR) were
combined to estimate anomaly values of ROADM through extracting information of PSD and equalizer
taps in receiver, contributing to network reconfiguration and equipment adjustment for recovery. Failure
magnitude estimation could provide the specific deviation values from the normal condition, which is the
detailed reference information for network reconfiguration and equipment adjustment for recovery.

Table 4 Summary of failure localization, failure identification, and failure magnitude estimation

Task Algorithm Data Description Literature

Failure localization

ANN
PSD of received signals and tap

coefficients of adaptive filter
Localizing the irregular WSS 2020OFC [74]

ANN Data from streaming telemetry

The locations of failed

amplifier, fiber, transponder

were spotted in two topologies

2020ECOC [75]

2021JOCN [76]

GN model GSNR value Localizing the soft-failed WSS or EDFA 2020OFC [77]

Gaussian process
Historical data: network

state and past failure incidents
Spotting the suspected link 2018JOCN [7]

LSTM Reflective data from OTDR
Fiber defect localization by

detecting reflective events
2021JOCN [11]

DBP algorithm
Coefficients of

backpropagation with FIR filters

Fiber degradation

localization based on estimated

loss and dispersion profile

2020ECOC [27]

Failure identification

SVM

CNN

ANN

Electric spectrum from receiver

Filter effects, increased

ASE noise, nonlinearity

channel crosstalk, and fiber

length fluctuation were identified.

2020JLT [56]

2020OE [58]

SVM Optical spectrum from OSA
Filter effects, laser shift,

and OSNR degradation were identified
2019JLT [12]

SVM

Autoencoder
Adaptive filter coefficient in DSP

Nonlinearity, inferior laser,

faulty ROADM were identified

2019OFC [60]

2020OFC [61]

CNN Power spectrum density
Cause identification of soft failure

based on power spectrum density
2020JLT [82]

XGBoost
Historical data: operating

state parameters of equipment

Five potential causes were

revealed in turn by analyzing

the internal structure of XGBoost

2020OFC [83]

2021OE [84]

Attention

mechanism-driven LSTM

Historical data: operating

state parameters of equipment

The highest-relevance failure

causes were confirmed according

to attention weight distribution

2021OFC [52]

2022JOCN [85]

Failure magnitude estimation

SVM Optical spectrum from OSA
The magnitude of laser and

filter drift were estimated

2019Access [21]

2018JOCN [79]

Welch’s method Digital spectrum from receiver
MSEs of five estimated

failure magnitudes were <0.4
2020OE [58]

ANN+GPR PSD and equalizer taps from receiver Anomaly values of ROADM were estimated 2021JLT [28]

4 Future Research Directions for ML-based Failure Management

In the future, several possibilities exist for the further enhancement of management ability in failure
management of optical networks. First, the quality and amount of data are still the most significant issue
for ML training and model building. However, in the practical networks, the failure data are rare and
difficult to acquire, which results in an extremely imbalanced distribution between normal and abnormal
data. Meanwhile, the raw data are always collected without labels and data annotation requires a lot
of time and human labor. Thus, the challenges of small dataset and data imbalance should be solved in
future studies, where the ML algorithms could learn from the limited and imbalanced failure data.

In addition, network telemetry is being rapidly developed to enable on-demand streaming of real-time
monitoring parameters. Telemetry would enhance the capability of online data collection, and thereby
failure management in the future should be reinforced by telemetry. Meanwhile, telemetry enables massive
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data collection in real time from several optical devices provided by various services, related to different
failure management tasks. However, most of existing methods can only handle single tasks. Thus, multiple
tasks are mutually isolated, leading to a lack of correlation analysis. Thus, multitask learning should
be further studied to develop multitasking, and correlation analysis should be conducted to empower
collaboration and interaction among the tasks.

Multiple 

Tasks

Data 

Imbalance

Small 

Dataset

Digital 

Twin

Future Work

Streaming 

Telemetry 

Interpretable

ML

Figure 10 Future work for failure management in optical networks: ML algorithms learn from small dataset and imbalanced

data; telemetry assisted real-time data collection; multitask learning and correlation analysis for multiple failure tasks; digital twin

for life-cycle health monitoring; physics-informed machine learning for interpretable algorithms instead of pure data-driven ML

Finally, we need to focus on the emerging techniques that have the potential to be applied in failure
management. Digital twin is a powerful tool that can enable the construction of the mirror model of
physical objects and monitor them in digital space, which has been introduced to optical communications
to perform the life-cycle health management. Furthermore, previous ML algorithms used in failure
management were based on data-driven modeling without other prior knowledge. In addition, recently,
physics-informed machine learning has been attracting wide attention from various areas, because it
combines the benefits of machine learning and physical principles instead of functioning according to a
purely data-driven approach [86, 87]. In optical communications, lots of physical knowledge have been
explored and could provide helpful information and insightful analysis for failure management. This
is another promising research direction for failure management from the perspective of ML innovation.
Accordingly, the interpretability of ML is another promising and important research direction for optical
communications [88], and equally important for failure management. The interpretable ML could not only
implement the basic function but also provide the insight information for failure analysis and diagnosis,
which has started to appear very recently in [89].
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