Skip to main content
Log in

Ultra-wideband fiber-THz-fiber seamless integration communication system toward 6G: architecture, key techniques, and testbed implementation

  • Progress
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

Terahertz (THz) communication is widely regarded as the key component of future 6G mobile communication systems. Through comparative analysis of some of the main existing technical routes of THz up-conversion and down-conversion in THz wireless communication systems, a novel ultra-wideband (UWB) fiber-THz-fiber seamlessly converged real-time architecture, which utilizes the commercially mature digital coherent optical module to realize ultrahigh-capacity THz real-time wireless communication, is proposed in this study. (1) The proposed architecture employs the dual-polarization photonic up-conversion technique for THz generation and hybrid optoelectronic down-conversion technique for THz reception to facilitate the seamless integration between optical fiber and THz communications. (2) Because of the limited bandwidth of optoelectronic devices, multidimensional modulation techniques are adopted for UWB THz signals to improve spectral efficiency and transmission capacity. (3) An intelligent nonlinear joint compensation technique based on the deep neural network, which can effectively improve the signal-to-noise ratio of the time-varying hybrid fiber-THz-fiber channel, is proposed. Based on the investigations of the aforementioned key techniques, we, for the first time, realize the photonics-assisted record-high 100/200 GbE real-time THz wireless transmission at 360–430 GHz band, the capacity of which is 10–20 times higher than that of 5G. The proposed fiber-THz-fiber architecture can realize the smooth conversion between high-speed THz and lightwave signals. Moreover, the architecture can significantly reduce the research difficulty and development cost, thereby considerably accelerating the commercialization of 6G THz technology by thoroughly reusing commercial digital coherent optical module (DCO) modules, which are compatible with the physical layer transmission protocols, such as IEEE 802.3 and ITU-T G.798. Finally, this study also introduces some potential directions of research and development for higher-capacity, longer-distance, and more-integrated fiber-THz-fiber seamless communication.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Saad W, Bennis M, Chen M. A vision of 6G wireless systems: applications, trends, technologies, and open research problems. IEEE Network, 2020, 34: 134–142

    Article  Google Scholar 

  2. Commission F C. FCC takes steps to open spectrum horizons for new services and technologies. 2019. https://docs.fcc.gov/public/attachments/DOC-356588A1.pdf

  3. You X H, Wang C-X, Huang J, et al. Towards 6G wireless communication networks: vision, enabling technologies, and new paradigm shifts. Sci China Inf Sci, 2021, 64: 110301

    Article  Google Scholar 

  4. Global 6G Conference White Paper. Terahertz Communication. Nanjing: FuTURE Mobile Communication Forum, 2022. http://www.g6gconference.com/whitepaper.rar

  5. Zhang L, Pang X D, Jia S, et al. Beyond 100 Gb/s optoelectronic Terahertz communications: key technologies and directions. IEEE Commun Mag, 2020, 58: 34–40

    Article  Google Scholar 

  6. Chen Z, Ma X Y, Zhang B, et al. A survey on terahertz communications. China Commun, 2019, 16: 1–35

    Article  ADS  Google Scholar 

  7. Yang P, Xiao Y, Xiao M, et al. 6G wireless communications: vision and potential techniques. IEEE Network, 2019, 33: 70–75

    Article  Google Scholar 

  8. Zong B Q, Fan C, Wang X Y, et al. 6G technologies: key drivers, core requirements, system architectures, and enabling technologies. IEEE Veh Technol Mag, 2019, 14: 18–27

    Article  Google Scholar 

  9. Kallfass I, Antes J, Schneider T, et al. All active MMIC-based wireless communication at 220 GHz. IEEE Trans THz Sci Technol, 2011, 1: 477–487

    Article  Google Scholar 

  10. Chung T J, Lee W H. A 1.485-Gbit/s video signal transmission system at carrier frequencies of 240 GHz and 300 GHz. ETRI J, 2011, 33: 965–968

    Article  Google Scholar 

  11. Wang C, Liu J, Wu S Y, et al. 0.14 THz 10 Gbps wireless communication system (in Chinese). Inform Elrctron Eng, 2011, 9: 265–269

    Google Scholar 

  12. Kallfass I, Antes J, Lopez-Diaz D, et al. Broadband active integrated circuits for terahertz communication. In: Proceedings of the 18th European Wireless Conference 2012, 2012. 1–5

  13. Song H J, Kim J Y, Ajito K, et al. 50-Gb/s direct conversion QPSK modulator and demodulator MMICs for Terahertz communications at 300 GHz. IEEE Trans Microwave Theor Techn, 2014, 62: 600–609

    Article  ADS  Google Scholar 

  14. Moeller L, Federici J, Su K. 2.5 Gbit/s duobinary signalling with narrow bandwidth 0.625 terahertz source. Electron Lett, 2011, 47: 856–858

    Article  ADS  Google Scholar 

  15. Wang C, Lu B, Lin C, et al. 0.34-THz wireless link based on high-order modulation for future wireless local area network applications. IEEE Trans THz Sci Technol, 2014, 4: 75–85

    Article  Google Scholar 

  16. Kallfass I, Boes F, Messinger T, et al. 64 Gbit/s transmission over 850 m fixed wireless link at 240 GHz carrier frequency. J Infrared Milli Terahz Waves, 2015, 36: 221–233

    Article  Google Scholar 

  17. Fujishima M, Amakawa S, Takano K, et al. Tehrahertz CMOS design for low-power and high-speed wireless communication. IEICE Trans Electron, 2015, E98.C: 1091–1104

    Article  ADS  Google Scholar 

  18. Wu Q Y, Lin C X, Lu B. Design and tests of 21 km, 5 Gbps, 0.14 THz wireless communication system. High Power Laser and Particle Beams, 2017, 29: 060101

    Google Scholar 

  19. IMT-2030(6G) White Paper. Terahertz Communication Technology Research Report. Beijing: IMT-2030(6G) Promotion Group, 2021. https://www.china-cic.cn/Detail/24/62/3415/2030

    Google Scholar 

  20. Koenig S, Lopez-Diaz D, Antes J, et al. Wireless sub-THz communication system with high data rate. Nat Photon, 2013, 7: 977–981

    Article  ADS  CAS  Google Scholar 

  21. Fice M, Shams H, Zhen Y, et al. Photonic generation and distribution of coherent multiband THz wireless signals. In: Proceedings of the 11th European Conference on Antennas & Propagation, 2017. 1634–1638

  22. Puerta R, Yu J J, Li X Y, et al. Single-carrier dual-polarization 328-Gb/s wireless transmission in a D-band millimeter wave 2 × 2 MU-MIMO radio-over-fiber system. J Lightwave Technol, 2018, 36: 587–593

    Article  ADS  Google Scholar 

  23. Jia S, Lo M, Zhang L, et al. Integrated dual-DFB laser for 408 GHz carrier generation enabling 131 Gbit/s wireless transmission over 10.7 meters. In: Proceedings of Optical Fiber Communications Conference and Exhibition (OFC), 2019. Th1C.2

  24. Li X Y, Yu J J, Wang K H, et al. 120 Gb/s wireless Terahertz-wave signal delivery by 375 GHz-500 GHz multi-carrier in a 2 × 2 MIMO system. J Lightwave Technol, 2019, 37: 606–611

    Article  ADS  CAS  Google Scholar 

  25. Carlos C, Nellen S, Elschner R, et al. 32 GBd 16QAM wireless transmission in the 300 GHz band using a PIN diode for THz upconversion. In: Proceedings of Optical Fiber Communications Conference and Exhibition (OFC), 2019

  26. Li W, Lin K X, Wang S W, et al. Probabilistic shaping-assisted bit-energy efficient THz photonic wireless transmission. In: Proceedings of the 45th European Conference on Optical Communication (ECOC 2019), 2019. 1–3

  27. Jia S, Zhang L, Wang S W, et al. 2 × 300 Gbit/s line rate PS-64QAM-OFDM THz photonic-wireless transmission. J Lightwave Technol, 2020, 38: 4715–4721

    Article  ADS  Google Scholar 

  28. Harter T, Füllner C, Kemal J N, et al. Generalized Kramers-Kronig receiver for coherent terahertz communications. Nat Photonics, 2020, 14: 601–606

    Article  ADS  CAS  Google Scholar 

  29. Wang S W, Lu Z J, Li W, et al. 26.8-m THz wireless transmission of probabilistic shaping 16-QAM-OFDM signals. APL Photonics, 2020, 5: 056105

    Article  ADS  Google Scholar 

  30. Li W P, Ding J J, Wang Y Y, et al. 54/104 meters terahertz wireless delivery of 124.8/44.8 Gbit/s signals without terahertz amplifier. In: Proceedings of Asia Communications and Photonics Conference, Shanghai, 2021. T4D.8

  31. Song H J, Ajito K, Wakatsuki A, et al. Terahertz wireless communication link at 300 GHz. In: Proceedings of IEEE International Topical Meeting on Microwave Photonics, Montreal, 2010. 42–45

  32. Song H J, Ajito K, Muramoto Y, et al. 24 Gbit/s data transmission in 300 GHz band for future terahertz communications. Electron Lett, 2012, 48: 953–954

    Article  ADS  Google Scholar 

  33. Nagatsuma T, Horiguchi S, Minamikata Y, et al. Terahertz wireless communications based on photonics technologies. Opt Express, 2013, 21: 477–487

    Article  Google Scholar 

  34. Stohr A, Hermelo M F, Steeg M, et al. Coherent radio-over-fiber THz communication link for high data-rate 59 Gbit/s 64-QAM-OFDM and real-time HDTV transmission. In: Proceedings of Optical Fiber Communication Conference, Los Angeles, 2017. Tu3B.2

  35. Jia S, Pang X D, Ozolins O, et al. 0.4 THz photonic-wireless link with 106 Gb/s single channel bitrate. J Lightwave Technol, 2018, 36: 610–616

    Article  ADS  CAS  Google Scholar 

  36. Castro C, Elschner R, Merkle T, et al. 100 Gb/s real-time transmission over a THz wireless fiber extender using a digital-coherent optical modem. In: Proceedings of Optical Fiber Communication Conference, San Diego, 2020. M4I.2

  37. Burla M, Hoessbacher C, Heni W, et al. 500 GHz plasmonic Mach-Zehnder modulator enabling sub-THz microwave photonics. APL Photonics, 2019, 4: 056106

    Article  ADS  Google Scholar 

  38. Ummethala S, Harter T, Koehnle K, et al. THz-to-optical conversion in wireless communications using an ultra-broadband plasmonic modulator. Nat Photonics, 2019, 13: 519–524

    Article  CAS  Google Scholar 

  39. Horst Y, Blatter T, Kulmer L, et al. Transparent optical-THz-optical link transmission over 5/115 m at 240/190 Gbit/s enabled by plasmonics. In: Proceedings of Optical Fiber Communications Conference and Exhibition, Francisco, 2021. 1–3

  40. Dat P T, Yamaguchi Y, Motoya M, et al. Transparent fiber-millimeter-wave-fiber system in 100-GHz band using optical modulator and photonic down-conversion. J Lightwave Technol, 2022, 40: 1483–1493

    Article  ADS  CAS  Google Scholar 

  41. Wang C, Yu J J, Li X Y, et al. Fiber-THz-fiber link for THz signal transmission. IEEE Photonics J, 2018, 10: 1–6

    Google Scholar 

  42. Wang C, Li X Y, Wang K H, et al. Seamless integration of a fiber-THz wireless-fiber 2 × 2 MIMO broadband network. In: Proceedings of Asia Communications and Photonics Conference, Hangzhou, 2018. 1–3

  43. Ishibashi T, Muramoto Y, Yoshimatsu T, et al. Unitraveling-carrier photodiodes for terahertz applications. IEEE J Sel Top Quantum Electron, 2014, 20: 79–88

    Article  ADS  Google Scholar 

  44. Ayata M, Fedoryshyn Y, Heni W, et al. High-speed plasmonic modulator in a single metal layer. Science, 2017, 358: 630–632

    Article  ADS  CAS  PubMed  Google Scholar 

  45. Haffner C, Chelladurai D, Fedoryshyn Y, et al. Low-loss plasmon-assisted electro-optic modulator. Nature, 2018, 556: 483–486

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  46. Cho J, Winzer P J. Probabilistic constellation shaping for optical fiber communications. J Lightwave Technol, 2019, 37: 1590–1607

    Article  ADS  CAS  Google Scholar 

  47. Zhang J, Gou P Q, Kong M, et al. PAM-8 IM/DD transmission based on modified lookup table nonlinear predistortion. IEEE Photonics J, 2018, 10: 1–9

    Article  Google Scholar 

  48. Zhang J, Yu J J, Li X Y, et al. 200 Gbit/s/PDM-PAM-4 PON system based on intensity modulation and coherent detection. J Opt Commun Netw, 2020, 12: A1

    Article  Google Scholar 

  49. Zhou W, Shi J T, Zhao L, et al. Comparison of real- and complex-valued NN equalizers for photonics-aided 90-Gbps D-band PAM-4 coherent detection. J Lightwave Technol, 2021, 39: 6858–6868

    Article  ADS  Google Scholar 

  50. Zhang J, Zhu M, Hua B C, et al. 6G oriented 100 GbE real-time demonstration of fiber-THz-fiber seamless communication enabled by photonics. In: Proceedings of Optical Fiber Communication Conference, San Diego, 2022. M3Z.9

  51. Zhang J, Zhu M, Lei M Z, et al. Demonstration of real-time 125.516 Gbit/s transparent fiber-THz-fiber link transmission at 360 GHz–430 GHz based on photonic down-conversion. In: Proceedings of Optical Fiber Communication Conference, San Diego, 2022. M3C.2

  52. Zhang J, Zhu M, Lei M Z, et al. Real-time demonstration of 103.125-Gbps fiber-THz-fiber 2 × 2 MIMO transparent transmission at 360–430 GHz based on photonics. Opt Lett, 2022, 47: 1214–1217

    Article  ADS  PubMed  Google Scholar 

  53. Research White Paper. Towards 6G wireless communication networks: vision, enabling technologies, and new paradigm shifts. Nanjing: Purple Mountain Laboratories, 2020. https://www.pmlabs.com.cn/plus/view.php?aid=1044

Download references

Acknowledgements

This work was supported by National Key R&D Program of China (Grant Nos. 2020YFB1807205, 2020YF-B1806600) and Major Key Project of PCL (Grant No. PCL2021A01-2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaohu You.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, M., Zhang, J., Hua, B. et al. Ultra-wideband fiber-THz-fiber seamless integration communication system toward 6G: architecture, key techniques, and testbed implementation. Sci. China Inf. Sci. 66, 113301 (2023). https://doi.org/10.1007/s11432-022-3565-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11432-022-3565-3

Keywords

Navigation