Abstract
This study reviews the recent progress of high-dimensional quantum information processing with photons. We first introduce the basic language of high-dimensional quantum information, including the representation of quantum dits (qudits), unitary operations of qudit states, and the general format of quantum algorithms with qudits. We discuss experimental implementations of high-dimensional quantum information processing and quantum computing in photonic systems, particularly in integrated quantum photonic platforms. We also discuss how qudit-based quantum photonic devices and systems can be adopted for further improving qubit-based quantum computation and quantum simulation.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Giustina M, Versteegh M A M, Wengerowsky S, et al. Significant-loophole-free test of Bell’s theorem with entangled photons. Phys Rev Lett, 2015, 115: 250401
Shalm L K, Meyer-Scott E, Christensen B G, et al. Strong loophole-free test of local realism. Phys Rev Lett, 2015, 115: 250402
Liao S K, Cai W Q, Liu W Y, et al. Satellite-to-ground quantum key distribution. Nature, 2017, 549: 43–47
Chen Y A, Zhang Q, Chen T Y, et al. An integrated space-to-ground quantum communication network over 4,600 kilometres. Nature, 2021, 589: 214–219
Arute F, Arya K, Babbush R, et al. Quantum supremacy using a programmable superconducting processor. Nature, 2019, 574: 505–510
Zhong H S, Deng Y H, Qin J, et al. Phase-programmable Gaussian boson sampling using stimulated squeezed light. Phys Rev Lett, 2021, 127: 180502
Erhard M, Krenn M, Zeilinger A. Advances in high-dimensional quantum entanglement. Nat Rev Phys, 2020, 2: 365–381
Cozzolino D, da Lio B, Bacco D, et al. High-dimensional quantum communication: benefits, progress, and future challenges. Adv Quantum Tech, 2019, 2: 1900038
Babazadeh A, Erhard M, Wang F, et al. High-dimensional single-photon quantum gates: concepts and experiments. Phys Rev Lett, 2017, 119: 180510
Hu X M, Zhang C, Liu B H, et al. Experimental high-dimensional quantum teleportation. Phys Rev Lett, 2020, 125: 230501
Collins D, Gisin N, Linden N, et al. Bell inequalities for arbitrarily high-dimensional systems. Phys Rev Lett, 2002, 88: 040404
Vértesi T, Pironio S, Brunner N. Closing the detection loophole in Bell experiments using qudits. Phys Rev Lett, 2010, 104: 060401
Cerf N J, Bourennane M, Karlsson A, et al. Security of quantum key distribution using d-level systems. Phys Rev Lett, 2002, 88: 127902
Islam N T, Lim C C W, Cahall C, et al. Provably secure and high-rate quantum key distribution with time-bin qudits. Sci Adv, 2017, 3: e170149
Campbell E T. Enhanced fault-tolerant quantum computing in d-level systems. Phys Rev Lett, 2014, 113: 230501
Bocharov A, Roetteler M, Svore K M. Factoring with qutrits: Shor’s algorithm on ternary and metaplectic quantum architectures. Phys Rev A, 2017, 96: 012306
Gokhale P, Baker J M, Duckering C, et al. Asymptotic improvements to quantum circuits via qutrits. In: Proceedings of the 46th International Symposium on Computer Architecture, 2019. 554–566
Wang D S, Stephen D T, Raussendorf R. Qudit quantum computation on matrix product states with global symmetry. Phys Rev A, 2017, 95: 032312
Luo M X, Wang X J. Universal quantum computation with qudits. Sci China-Phys Mech Astron, 2014, 57: 1712–1717
Wang Y C, Hu Z X, Sanders B C, et al. Qudits and high-dimensional quantum computing. Front Phys, 2020, 8: 479
Zhou D L, Zeng B, Xu Z, et al. Quantum computation based on d-level cluster state. Phys Rev A, 2003, 68: 062303
Wei T C, Affleck I, Raussendorf R. Affleck-Kennedy-Lieb-Tasaki state on a honeycomb lattice is a universal quantum computational resource. Phys Rev Lett, 2011, 106: 070501
Paesani S, Bulmer J F F, Jones A E, et al. Scheme for universal high-dimensional quantum computation with linear optics. Phys Rev Lett, 2021, 126: 230504
Zobov V E, Ermilov A S. Implementation of a quantum adiabatic algorithm for factorization on two qudits. J Exp Theor Phys, 2012, 114: 923–932
Amin M H S, Dickson N G, Smith P. Adiabatic quantum optimization with qudits. Quantum Inf Process, 2013, 12: 1819–1829
Reimer C, Sciara S, Roztocki P, et al. High-dimensional one-way quantum processing implemented on d-level cluster states. Nat Phys, 2019, 15: 148–153
Imany P, Jaramillo-Villegas J A, Alshaykh M S, et al. High-dimensional optical quantum logic in large operational spaces. NPJ Quantum Inf, 2019, 5: 59
Ringbauer M, Meth M, Postler L, et al. A universal qudit quantum processor with trapped ions. Nat Phys, 2022, 18: 1053–1057
Cervera-Lierta A, Krenn M, Aspuru-Guzik A, et al. Experimental high-dimensional Greenberger-Horne-Zeilinger entanglement with superconducting transmon qutrits. Phys Rev Appl, 2022, 17: 024062
Blok M S, Ramasesh V V, Schuster T, et al. Quantum information scrambling on a superconducting qutrit processor. Phys Rev X, 2021, 11: 021010
Choi S, Choi J, Landig R, et al. Observation of discrete time-crystalline order in a disordered dipolar many-body system. Nature, 2017, 543: 221–225
Wang J W, Paesani S, Ding Y H, et al. Multidimensional quantum entanglement with large-scale integrated optics. Science, 2018, 360: 285–291
Li L, Liu Z X, Ren X F, et al. Metalens-array-based high-dimensional and multiphoton quantum source. Science, 2020, 368: 1487–1490
Kues M, Reimer C, Roztocki P, et al. On-chip generation of high-dimensional entangled quantum states and their coherent control. Nature, 2017, 546: 622–626
Kues M, Reimer C, Lukens J M, et al. Quantum optical microcombs. Nat Photon, 2019, 13: 170–179
Dada A C, Leach J, Buller G S, et al. Experimental high-dimensional two-photon entanglement and violations of generalized Bell inequalities. Nat Phys, 2011, 7: 677–680
Feng L T, Zhang M, Zhou Z Y, et al. On-chip coherent conversion of photonic quantum entanglement between different degrees of freedom. Nat Commun, 2016, 7: 11985
Mohanty A, Zhang M, Dutt A, et al. Quantum interference between transverse spatial waveguide modes. Nat Commun, 2017, 8: 14010
Wang J, Sciarrino F, Laing A, et al. Integrated photonic quantum technologies. Nat Photon, 2019, 14: 273–284
Elshaari A W, Pernice W, Srinivasan K, et al. Hybrid integrated quantum photonic circuits. Nat Photon, 2020, 14: 285–298
Pelucchi E, Fagas G, Aharonovich I, et al. The potential and global outlook of integrated photonics for quantum technologies. Nat Rev Phys, 2022, 4: 194–208
Brylinski J L, Brylinski R. Universal quantum gates. In: Mathematics of Quantum Computation. Boca Raton: Chapman and Hall/CRC, 2002. 117–134
Patera J, Zassenhaus H. The Pauli matrices in n dimensions and finest gradings of simple Lie algebras of type J Math Phys, 1988, 29: 665–673
Cereceda J L. Generalization of the Deutsch algorithm using two qudits. 2004. ArXiv:quant-ph/0407253
Muthukrishnan A, Stroud C R J. Multivalued logic gates for quantum computation. Phys Rev A, 2000, 62: 052309
Di Y M, Wei H R. Synthesis of multivalued quantum logic circuits by elementary gates. Phys Rev A, 2013, 87: 012325
Long G L. General quantum interference principle and duality computer. Commun Theor Phys, 2006, 45: 825–844
Wei S-J, Wang T, Ruan D, et al. Quantum computing. Sci Sin Inform, 2017, 47: 1277–1299
Childs A M, Wiebe N. Hamiltonian simulation using linear combinations of unitary operations. 2012. ArXiv:1202.5822
Berry D W, Childs A M, Cleve R, et al. Simulating Hamiltonian dynamics with a truncated Taylor series. Phys Rev Lett, 2015, 114: 090502
Wei S J, Ruan D, Long G L. Duality quantum algorithm efficiently simulates open quantum systems. Sci Rep, 2016, 6: 30727
Wei S J, Long G L. Duality quantum computer and the efficient quantum simulations. Quantum Inf Process, 2016, 15: 1189–1212
Zheng C. Duality quantum simulation of a general parity-time-symmetric two-level system. EPL, 2018, 123: 40002
Qiang X G, Zhou X Q, Aungskunsiri K, et al. Quantum processing by remote quantum control. Quantum Sci Technol, 2017, 2: 045002
Wei S J, Zhou Z R, Ruan D, et al. Realization of the algorithm for system of linear equations in duality quantum computing. In: Proceedings of IEEE 85th Vehicular Technology Conference (VTC Spring), 2017. 1–4
Zheng C, Wei S J. Duality quantum simulation of the Yang-Baxter equation. Int J Theor Phys, 2018, 57: 2203–2212
Marshman R J, Lund A P, Rohde P P, et al. Passive quantum error correction of linear optics networks through error averaging. Phys Rev A, 2018, 97: 022324
Nielsen M A, Chuang I. Quantum computation and quantum information. Am J Phys, 2002, 70: 558
Mohseni M, Rezakhani A T, Lidar D A. Quantum-process tomography: resource analysis of different strategies. Phys Rev A, 2008, 77: 032322
Riofrío C A, Gross D, Flammia S T, et al. Experimental quantum compressed sensing for a seven-qubit system. Nat Commun, 2017, 8: 15305
Bavaresco J, Valencia N H, Klöckl C, et al. Measurements in two bases are sufficient for certifying high-dimensional entanglement. Nat Phys, 2018, 14: 1032–1037
Hofmann H F. Complementary classical fidelities as an efficient criterion for the evaluation of experimentally realized quantum operations. Phys Rev Lett, 2005, 94: 160504
Adcock J C, Bao J M, Chi Y L, et al. Advances in silicon quantum photonics. IEEE J Sel Top Quantum Electron, 2020, 27: 1–24
Reck M, Zeilinger A, Bernstein H J, et al. Experimental realization of any discrete unitary operator. Phys Rev Lett, 1994, 73: 58
Clements W R, Humphreys P C, Metcalf B J, et al. Optimal design for universal multiport interferometers. Optica, 2016, 3: 1460–1465
Chi Y L, Huang J S, Zhang Z C, et al. A programmable qudit-based quantum processor. Nat Commun, 2022, 13: 1166
Knill E, Laflamme R, Milburn G J. A scheme for efficient quantum computation with linear optics. Nature, 2001, 409: 46–52
Silverstone J W. Entangled light in silicon waveguides. Dissertation for Ph.D. Degree. Bristol: University of Bristol, 2015. 121–124
Gao X Q, Erhard M, Zeilinger A, et al. Computer-inspired concept for high-dimensional multipartite quantum gates. Phys Rev Lett, 2020, 125: 050501
Malik M, Erhard M, Huber M, et al. Multi-photon entanglement in high dimensions. Nat Photon, 2016, 10: 248–252
Erhard M, Malik M, Krenn M, et al. Experimental Greenberger-Horne-Zeilinger entanglement beyond qubits. Nat Photon, 2018, 12: 759–764
Adcock J C, Vigliar C, Santagati R, et al. Programmable four-photon graph states on a silicon chip. Nat Commun, 2019, 10: 1–6
Raussendorf R, Browne D E, Briegel H J. Measurement-based quantum computation on cluster states. Phys Rev A, 2003, 68: 022312
Lanyon B P, Barbieri M, Almeida M P, et al. Simplifying quantum logic using higher-dimensional Hilbert spaces. Nat Phys, 2009, 5: 134–140
Zhou X Q, Ralph T C, Kalasuwan P, et al. Adding control to arbitrary unknown quantum operations. Nat Commun, 2011, 2: 413
Patel R B, Ho J, Ferreyrol F, et al. A quantum Fredkin gate. Sci Adv, 2016, 2: e1501531
Wang J W, Paesani S, Santagati R, et al. Experimental quantum Hamiltonian learning. Nat Phys, 2017, 13: 551–555
Wiebe N, Granade C, Ferrie C, et al. Hamiltonian learning and certification using quantum resources. Phys Rev Lett, 2014, 112: 190501
Khaneja N, Glaser S J. Cartan decomposition of SU(2n) and control of spin systems. Chem Phys, 2001, 267: 11–23
Qiang X G, Zhou X Q, Wang J W, et al. Large-scale silicon quantum photonics implementing arbitrary two-qubit processing. Nat Photon, 2018, 12: 534–539
Vigliar C, Paesani S, Ding Y H, et al. Error-protected qubits in a silicon photonic chip. Nat Phys, 2021, 17: 1137–1143
Fan Y. A generalization of the Deutsch-Jozsa algorithm to multi-valued quantum logic. In: Proceedings of the 37th International Symposium on Multiple-Valued Logic (ISMVL’07), 2007. 12
Bernstein E, Vazirani U. Quantum complexity theory. SIAM J Comput, 1997, 26: 1411–1473
Aspuru-Guzik A, Dutoi A D, Love P J, et al. Simulated quantum computation of molecular energies. Science, 2005, 309: 1704–1707
Shor P W. Algorithms for quantum computation: discrete logarithms and factoring. In: Proceedings of the 35th Annual Symposium on Foundations of Computer Science, 1994. 124–134
Kitaev A Y. Quantum measurements and the Abelian stabilizer problem. 2016. ArXiv:quant-ph/9511026
Griffiths R B, Niu C S. Semiclassical Fourier transform for quantum computation. Phys Rev Lett, 1996, 76: 3228–3231
Parker S, Plenio M B. Efficient factorization with a single pure qubit and logN mixed qubits. Phys Rev Lett, 2000, 85: 3049–3052
Dobšíček M, Johansson G, Shumeiko V, et al. Arbitrary accuracy iterative quantum phase estimation algorithm using a single ancillary qubit: a two-qubit benchmark. Phys Rev A, 2007, 76: 030306
Acknowledgements
This work was supported by Innovation Program for Quantum Science and Technology (Grant No. 2021-ZD0301500), National Key R&D Program of China (Grant No. 2019-YFA0308702), National Natural Science Foundation of China (Grant No. 61975001), Beijing Natural Science Foundation (Grant No. Z190005), and Key R&D Program of Guangdong Province (Grant No. 2018-B030329001).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Chi, Y., Yu, Y., Gong, Q. et al. High-dimensional quantum information processing on programmable integrated photonic chips. Sci. China Inf. Sci. 66, 180501 (2023). https://doi.org/10.1007/s11432-022-3602-0
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11432-022-3602-0