Skip to main content

Advertisement

Log in

Programmable complex pumping field induced color-on-demand random lasing in fiber-integrated microbelts for speckle free imaging

  • Research Paper
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

Miniaturized lasers with on-demand color emission have immense potential in the development of integrated imaging sources. Random lasers (RLs) with cavity-free structures and low spatial coherence are promising candidates for multicolor imaging sources. However, the wide tuning range and high tuning accuracy of continuous and reversible random lasing color with a defined emissive direction remain challenging. Here, random lasing with on-demand color emission and defined emissive direction is realized in fiber-integrated microbelts through programmable pumping. Individual RL microbelts as RL units doped with blue (B)-, green (G)-, and red (R)-emissive dyes and titanium dioxide nanoparticles are assembled on an optical fiber, resulting in high-performance B/G/R lasing. The optical fiber functions as a waveguide that guides the multicolor RL to ensure a defined directional emission. By manipulating the combination of the B/G/R RL units on the waveguide, distinctive lasing colors covering the entire visible spectrum are obtained, including white-colored random lasing. To realize dynamically controllable lasing for on-demand color emission, a pumping strategy with programmable excitation is proposed by shaping the pump beams into different beam arrays for precisely pumping the RL unit combination. We envision that fiber-integrated RL sources can be implemented in various imaging applications, such as biomedical diagnosis, multiplexed communication, and optical sensing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Spahn C, Hurter F, Glaesmann M, et al. Protein-specific, multicolor and 3D STED imaging in cells with DNA-labeled antibodies. Angew Chem Intl Edit, 2019, 58: 18835–18838

    Article  Google Scholar 

  2. Spahn C, Grimm J B, Lavis L D, et al. Whole-cell, 3D, and multicolor STED imaging with exchangeable fluorophores. Nano Lett, 2019, 19: 500–505

    Article  MATH  Google Scholar 

  3. Tian X, Murfin L C, Wu L, et al. Fluorescent small organic probes for biosensing. Chem Sci, 2021, 12: 3406–3426

    Article  MATH  Google Scholar 

  4. Shen Y, Shao T, Fang B, et al. Visualization of mitochondrial DNA in living cells with super-resolution microscopy using thiophene-based terpyridine Zn(ii) complexes. Chem Commun, 2018, 54: 11288–11291

    Article  MATH  Google Scholar 

  5. Deng Z M, Bi S H, Jiang M Y, et al. Endogenous H2 S-activated orthogonal second near-infrared emissive nanoprobe for in situ ratiometric fluorescence imaging of metformin-induced liver injury. ACS Nano, 2021, 15: 3201–3211

    Article  MATH  Google Scholar 

  6. Deng H P, Konopka C J, Prabhu S, et al. Dextran-mimetic quantum dots for multimodal macrophage imaging in vivo, ex vivo, and in situ. ACS Nano, 2022, 16: 1999–2012

    Article  MATH  Google Scholar 

  7. Zhao J Y, Yan Y L, Gao Z H, et al. Full-color laser displays based on organic printed microlaser arrays. Nat Commun, 2019, 10: 870

    Article  MATH  Google Scholar 

  8. Ge K, Xu Z Y, Guo D, et al. RGB WGM lasing woven in fiber braiding cavity. Sci China Inf Sci, 2022, 65: 182403

    Article  Google Scholar 

  9. Hayat A, Tong J H, Chen C, et al. Multi-wavelength colloidal quantum dot lasers in distributed feedback cavities. Sci China Inf Sci, 2020, 63: 182401

    Article  Google Scholar 

  10. Hao Z, Ma Y X, Jiang B Q, et al. Second harmonic generation in a hollow-core fiber filled with GaSe nanosheets. Sci China Inf Sci, 2022, 65: 162403

    Article  MATH  Google Scholar 

  11. Kumar B, Homri R, Priyanka R, et al. Localized modes revealed in random lasers. Optica, 2021, 8: 1033

    Article  MATH  Google Scholar 

  12. Tong J, Shi X, Wang Y, et al. Flexible plasmonic random laser for wearable humidity sensing. Sci China Inf Sci, 2021, 64: 222401

    Article  MATH  Google Scholar 

  13. Redding B, Choma M A, Cao H. Speckle-free laser imaging using random laser illumination. Nat Photon, 2012, 6: 355–359

    Article  MATH  Google Scholar 

  14. Liu Y L, Yang W H, Xiao S M, et al. Surface-emitting perovskite random lasers for speckle-free imaging. ACS Nano, 2019, 13: 10653–10661

    Article  MATH  Google Scholar 

  15. Zhai T R, Xu Z Y, Li S T, et al. Red-green-blue plasmonic random laser. Opt Express, 2017, 25: 2100

    Article  MATH  Google Scholar 

  16. Zhai T R, Niu L Z, Cao F Z, et al. A RGB random laser on an optical fiber facet. RSC Adv, 2017, 7: 45852–45855

    Article  MATH  Google Scholar 

  17. Shi X Y, Bian Y X, Tong J H, et al. Chromaticity-tunable white random lasing based on a microfluidic channel. Opt Express, 2020, 28: 13576–13585

    Article  MATH  Google Scholar 

  18. Shi X Y, Tong J H, Liu D H, et al. Resonance energy transfer process in nanogap-based dual-color random lasing. Appl Phys Lett, 2017, 110: 171110

    Article  MATH  Google Scholar 

  19. Tong J H, Shi X Y, Niu L Z, et al. Dual-color plasmonic random lasers for speckle-free imaging. Nanotechnology, 2020, 31: 465204

    Article  MATH  Google Scholar 

  20. Krämmer S, Vannahme C, Smith C L C, et al. Random-cavity lasing from electrospun polymer fiber networks. Adv Mater, 2014, 26: 8096–8100

    Article  MATH  Google Scholar 

  21. Bian Y X, Shi X Y, Hu M N, et al. A ring-shaped random laser in momentum space. Nanoscale, 2020, 12: 3166–3173

    Article  MATH  Google Scholar 

  22. Chen S W, Lu J Y, Hung B Y, et al. Random lasers from photonic crystal wings of butterfly and moth for speckle-free imaging. Opt Express, 2021, 29: 2065–2076

    Article  MATH  Google Scholar 

  23. Wang Y R, Shi X Y, Sun Y Y, et al. Cascade-pumped random lasers with coherent emission formed by Ag-Au porous nanowires. Opt Lett, 2013, 39: 5–8

    Article  MATH  Google Scholar 

  24. El-Dardiry R G S, Lagendijk A. Tuning random lasers by engineered absorption. Appl Phys Lett, 2011, 98: 161106

    Article  Google Scholar 

  25. Song Q H, Xiao S M, Zhou X C, et al. Liquid-crystal-based tunable high-Q directional random laser from a planar random microcavity. Opt Lett, 2007, 32: 373–375

    Article  MATH  Google Scholar 

  26. Schönhuber S, Brandstetter M, Hisch T, et al. Random lasers for broadband directional emission. Optica, 2016, 3: 1035

    Article  Google Scholar 

  27. Perumbilavil S, Piccardi A, Barboza R, et al. Beaming random lasers with soliton control. Nat Commun, 2018, 9: 3863

    Article  MATH  Google Scholar 

  28. Cerdá, Enciso E, Martín V, et al. FRET-assisted laser emission in colloidal suspensions of dye-doped latex nanoparticles. Nat Photon, 2012, 6: 621–626

    Article  Google Scholar 

  29. Clapp A R, Medintz I L, Mauro J M, et al. Fluorescence resonance energy transfer between quantum dot donors and dye-labeled protein acceptors. J Am Chem Soc, 2004, 126: 301–310

    Article  Google Scholar 

  30. Ibisate M, Galisteo-Ló Esteso V, et al. FRET-mediated amplified spontaneous emission in DNA-CTMA complexes. Adv Opt Mater, 2013, 1: 651–656

    Article  Google Scholar 

  31. Fölling J, Polyakova S, Belov V, et al. Synthesis and characterization of photoswitchable fluorescent silica nanoparticles. Small, 2008, 4: 134–142

    Article  MATH  Google Scholar 

  32. Gu F X, Yu H K, Wang P, et al. Light-emitting polymer single nanofibers via waveguiding excitation. ACS Nano, 2010, 4: 5332–5338

    Article  MATH  Google Scholar 

  33. Liu Z Y, Cui Q Y, Huang Z H, et al. Transparent colored display enabled by flat glass waveguide and nanoimprinted multilayer gratings. ACS Photon, 2020, 7: 1418–1424

    Article  MATH  Google Scholar 

  34. Gao Z H, Wei C, Yan Y L, et al. Covert photonic barcodes based on light controlled acidichromism in organic dye doped whispering-gallery-mode microdisks. Adv Mater, 2017, 29: 1701558

    Article  Google Scholar 

  35. Wei C, Gao M M, Hu F Q, et al. Excimer emission in self-assembled organic spherical microstructures: an effective approach to wavelength switchable microlasers. Adv Opt Mater, 2016, 4: 1009–1014

    Article  MATH  Google Scholar 

  36. Gaio M, Moffa M, Castro-Lopez M, et al. Modal coupling of single photon emitters within nanofiber waveguides. ACS Nano, 2016, 10: 6125–6130

    Article  MATH  Google Scholar 

  37. Xie Z D, Xie K, Hu T P, et al. Multi-wavelength coherent random laser in bio-microfibers. Opt Express, 2020, 28: 5179–5188

    Article  MATH  Google Scholar 

  38. Wang C L, Gong C Y, Zhang Y F, et al. Programmable rainbow-colored optofluidic fiber laser encoded with topologically structured chiral droplets. ACS Nano, 2021, 15: 11126–11136

    Article  Google Scholar 

  39. Liu Z C, Yin L J, Ning H, et al. Dynamical color-controllable lasing with extremely wide tuning range from red to green in a single alloy nanowire using nanoscale manipulation. Nano Lett, 2013, 13: 4945–4950

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tianrui Zhai.

Additional information

Supporting information

Appendixes A–H. The supporting information is available online at info.scichina.com and link.springer.com. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Electronic Supplementary Material

11432_2022_3642_MOESM1_ESM.pdf

Programmable complex pumping field induced color-on-demand random lasing in fiber-integrated microbelts for speckle free imaging

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, X., Shen, K., Bian, Y. et al. Programmable complex pumping field induced color-on-demand random lasing in fiber-integrated microbelts for speckle free imaging. Sci. China Inf. Sci. 66, 222401 (2023). https://doi.org/10.1007/s11432-022-3642-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11432-022-3642-8

Keywords

Navigation