Skip to main content
Log in

Fractional core-based collapse mechanism and structural optimization in complex systems

  • Research Paper
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

Catastrophic and major disasters in real-world systems ranging from financial markets and ecosystems, often show generic early-warning signals that may indicate a collapse. Hence, understanding the collapse mechanism of a complex network and predicting its process are of uttermost importance. However, these challenges are often hindered by the extremely high dimensionality of the underlying system. We present here the concept of the fractional core (F-core) that considers the contribution of the network topology and dynamics to systematically analyze the collapse process in such networks, and encompass a broad range of dynamical systems, from mutualistic ecosystems to regulatory dynamics. We offer testable predictions on the tipping point, and, in particular, prove that the extinction of the maximum F-core of a network is an efficient indicator of whether a system completely collapses. The results show that the death of species or cells in a low-order F-core may improve the average density and have little influence on the tipping point. Generally, the principle of the F-core demonstrates how complex systems collapse and opens an innovative optimization strategy to uncover the optimal structure of systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yeakel J D, Pires M M, Rudolf L, et al. Collapse of an ecological network in Ancient Egypt. Proc Natl Acad Sci USA, 2014, 111: 14472–14477

    Article  Google Scholar 

  2. Lenton T M, Held H, Kriegler E, et al. Tipping elements in the Earth’s climate system. Proc Natl Acad Sci USA, 2008, 105: 1786–1793

    Article  MATH  Google Scholar 

  3. Mehrabi Z. Food system collapse. Nat Clim Chang, 2020, 10: 16–17

    Article  Google Scholar 

  4. Gao J, Barzel B, Barabási A L. Universal resilience patterns in complex networks. Nature, 2016, 530: 307–312

    Article  Google Scholar 

  5. Arani B M S, Carpenter S R, Lahti L, et al. Exit time as a measure of ecological resilience. Science, 2021, 372: eaay4895

    Article  Google Scholar 

  6. Pettersson S, Savage V M, Jacobi M N. Predicting collapse of complex ecological systems: quantifying the stability-complexity continuum. J R Soc Interface, 2020, 17: 20190391

    Article  Google Scholar 

  7. Scheffer M, Carpenter S R, Lenton T M, et al. Anticipating critical transitions. Science, 2012, 338: 344–348

    Article  Google Scholar 

  8. Thompson J N. Mutualistic webs of species. Science, 2006, 312: 372–373

    Article  Google Scholar 

  9. Albrecht J, Berens D G, Jaroszewicz B, et al. Correlated loss of ecosystem services in coupled mutualistic networks. Nat Commun, 2014, 5: 3810

    Article  Google Scholar 

  10. Scheffer M, Carpenter S, Foley J A, et al. Catastrophic shifts in ecosystems. Nature, 2001, 413: 591–596

    Article  Google Scholar 

  11. Kéfi S, Rietkerk M, Alados C L, et al. Spatial vegetation patterns and imminent desertification in Mediterranean arid ecosystems. Nature, 2007, 449: 213–217

    Article  Google Scholar 

  12. Drake J M, Griffen B D. Early warning signals of extinction in deteriorating environments. Nature, 2010, 467: 456–459

    Article  Google Scholar 

  13. Dai L, Vorselen D, Korolev K S, et al. Generic indicators for loss of resilience before a tipping point leading to population collapse. Science, 2012, 336: 1175–1177

    Article  Google Scholar 

  14. Lever J J, van Nes E H, Scheffer M, et al. The sudden collapse of pollinator communities. Ecol Lett, 2014, 17: 350–359

    Article  Google Scholar 

  15. Carpenter S R, Brock W A. Rising variance: a leading indicator of ecological transition. Ecol Lett, 2006, 9: 311–318

    Article  Google Scholar 

  16. Guttal V, Jayaprakash C. Changing skewness: an early warning signal of regime shifts in ecosystems. Ecol Lett, 2008, 11: 450–460

    Article  Google Scholar 

  17. Carpenter S R, Brock W A, Cole J J, et al. Leading indicators of trophic cascades. Ecol Lett, 2008, 11: 128–138

    Google Scholar 

  18. Scheffer M, Bascompte J, Brock W A, et al. Early-warning signals for critical transitions. Nature, 2009, 461: 53–59

    Article  Google Scholar 

  19. Simpson-Porco J W, Dörfler F, Bullo F. Voltage collapse in complex power grids. Nat Commun, 2016, 7: 10790

    Article  Google Scholar 

  20. Obura D, Gudka M, Samoilys M, et al. Vulnerability to collapse of coral reef ecosystems in the Western Indian Ocean. Nat Sustain, 2022, 5: 104–113

    Article  Google Scholar 

  21. Morone F, Ferraro G D, Makse H A. The k-core as a predictor of structural collapse in mutualistic ecosystems. Nat Phys, 2019, 15: 95–102

    Article  Google Scholar 

  22. Zhang F, Xie J, Wang K, et al. Discovering key users for defending network structural stability. World Wide Web, 2022, 25: 679–701

    Article  Google Scholar 

  23. Burleson-Lesser K, Morone F, Tomassone M S, et al. K-core robustness in ecological and financial networks. Sci Rep, 2020, 10: 1–4

    Article  Google Scholar 

  24. May R M. Thresholds and breakpoints in ecosystems with a multiplicity of stable states. Nature, 1977, 269: 471–477

    Article  Google Scholar 

  25. Mumby P J, Hastings A, Edwards H J. Thresholds and the resilience of Caribbean coral reefs. Nature, 2007, 450: 98–101

    Article  Google Scholar 

  26. Xiong W, Ferrell J J E. A positive-feedback-based bistable ‘memory module’ that governs a cell fate decision. Nature, 2003, 426: 460–465

    Article  Google Scholar 

  27. Gardner T S, Cantor C R, Collins J J. Construction of a genetic toggle switch in Escherichia coli. Nature, 2000, 403: 339–342

    Article  Google Scholar 

  28. Moore J C. Predicting tipping points in complex environmental systems. Proc Natl Acad Sci USA, 2018, 115: 635–636

    Article  Google Scholar 

  29. Laurence E, Doyon N, Dubé L J, et al. Spectral dimension reduction of complex dynamical networks. Phys Rev X, 2019, 9: 011042

    Google Scholar 

  30. Jiang J, Huang Z G, Seager T P, et al. Predicting tipping points in mutualistic networks through dimension reduction. Proc Natl Acad Sci USA, 2018, 115: 639–647

    Article  MathSciNet  MATH  Google Scholar 

  31. Barrat A, Barthélemy M, Pastor-Satorras R, et al. The architecture of complex weighted networks. Proc Natl Acad Sci USA, 2004, 101: 3747–3752

    Article  Google Scholar 

  32. Revilla T A, Encinas-Viso F, Loreau M. Robustness of mutualistic networks under phenological change and habitat destruction. Oikos, 2015, 124: 22–32

    Article  Google Scholar 

  33. Rodríguez-Rodríguez M C, Jordano P, Valido A. Functional consequences of plant-animal interactions along the mutualism-antagonism gradient. Ecology, 2017, 98: 1266–1276

    Article  Google Scholar 

  34. Clauset A, Shalizi C R, Newman M E J. Power-law distributions in empirical data. SIAM Rev, 2009, 51: 661–703

    Article  MathSciNet  MATH  Google Scholar 

  35. Bellwood D R, Hughes T P, Folke C, et al. Confronting the coral reef crisis. Nature, 2004, 429: 827–833

    Article  Google Scholar 

  36. Hughes T P, Graham N A J, Jackson J B C, et al. Rising to the challenge of sustaining coral reef resilience. Trends Ecol Evol, 2010, 25: 633–642

    Article  Google Scholar 

  37. Perry C T, Alvarez-Filip L, Graham N A J, et al. Loss of coral reef growth capacity to track future increases in sea level. Nature, 2018, 558: 396–400

    Article  Google Scholar 

  38. Ollerton J, McCollin D, Fautin D G, et al. Finding NEMO: nestedness engendered by mutualistic organization in anemonefish and their hosts. Proc R Soc B, 2007, 274: 591–598

    Article  Google Scholar 

  39. Balaji S, Babu M M, Iyer L M, et al. Comprehensive analysis of combinatorial regulation using the transcriptional regulatory network of yeast. J Mol Biol, 2006, 360: 213–227

    Article  Google Scholar 

  40. Urban M C. Accelerating extinction risk from climate change. Science, 2015, 348: 571–573

    Article  Google Scholar 

  41. Cardinale B J, Matulich K L, Hooper D U, et al. The functional role of producer diversity in ecosystems. Am J Bot, 2011, 98: 572–592

    Article  Google Scholar 

  42. Fetzer I, Johst K, Schäwe R, et al. The extent of functional redundancy changes as species’ roles shift in different environments. Proc Natl Acad Sci USA, 2015, 112: 14888–14893

    Article  Google Scholar 

  43. Isbell F, Craven D, Connolly J, et al. Biodiversity increases the resistance of ecosystem productivity to climate extremes. Nature, 2015, 526: 574–577

    Article  Google Scholar 

  44. Mills L S, Soulé M E, Doak D F. The Keystone-species concept in ecology and conservation. BioScience, 1993, 43: 219–224

    Article  Google Scholar 

  45. Peers M J L, Majchrzak Y N, Menzies A K, et al. Climate change increases predation risk for a keystone species of the boreal forest. Nat Clim Chang, 2020, 10: 1149–1153

    Article  Google Scholar 

  46. Kikuchi Y, Tada A, Musolin D L, et al. Collapse of insect gut symbiosis under simulated climate change. mBio, 2016, 7: e01578–16

    Article  Google Scholar 

  47. Lobanova G, Fath B D, Rovenskaya E. Exploring simple structural configurations for optimal network mutualism. Commun Nonlinear Sci Numer Simul, 2009, 14: 1461–1485

    Article  MathSciNet  MATH  Google Scholar 

  48. Angelini C, Griffin J N, van de Koppel J, et al. A keystone mutualism underpins resilience of a coastal ecosystem to drought. Nat Commun, 2016, 7: 1–8

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported in part by National Natural Science Foundation of China (Grant Nos. 72171193, 72231008, 72071153), Key Research and Development Program of Shaanxi Province (Grant No. 2022KW-15), and Natural Science Foundation of Shaanxi Province (Grant No. 2023-JC-QN-0802).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dongli Duan or Zhen Wang.

Additional information

Supporting information

Appendixes A and B. The Appendix includes experimental setup and results. The supporting information is available online at info.scichina.com and link.springer.com. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Si, S., Lv, C., Cai, Z. et al. Fractional core-based collapse mechanism and structural optimization in complex systems. Sci. China Inf. Sci. 66, 192202 (2023). https://doi.org/10.1007/s11432-022-3731-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11432-022-3731-x

Keywords

Navigation