Skip to main content

Advertisement

Log in

Multiscale observation in wide-spatial radar surveillance based on coherent FDA design

  • Research Paper
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

Wide-spatial radar surveillance missions are challenging tasks, requiring an increased power budget and agility in transmission aimed at extracting information from multiple targets in different environments. These requirements necessitate high transmitting degrees of freedom (DOF) to achieve the objective of multiscale observation for specific tasks in specialized regions of interest. Herein, we exploit the multiscale observation ability in wide-spatial radar surveillance based on frequency diverse array (FDA) radar. The proposed method facilitates spatial anisotropic control of multiple radar resources, including the transmitting waveforms, beampattern, and bandwidth. By utilizing a coherent FDA radar, we offer principles for the selection of baseband waveforms, in addition to the quantitative design of the beampattern gain and optimal bandwidth from the perspective of detection. The feasibility of the proposed method is validated through numerical experiments, thus indicating the potential in wide-spatial radar surveillance. Moreover, this work can be regarded as a preliminary attempt to gauge the efficacy of the computational array, a novel academic concept.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Drabowitch S, Aubry C. Pattern compression by space-time binary coding of an array antenna. In: Proceedings of the AGARD CP 66, Advanced Radar Systems, 1969

  2. Chevalier F L. Space-time transmission and coding for airborne radars. CIE J Radar Sci Technol, 2008, 6: 411–421

    MATH  Google Scholar 

  3. Le Chevalier F. Space-time coding for active antenna systems. In: Principles of Modern Radar (Vol 2): Advanced Techniques. Stevenage Herts: SciTech Publishing, 2013

    MATH  Google Scholar 

  4. Wu M Q, Zhao Y, He F, et al. Computational array — digital array with computational empowerment (in Chinese). Sci Sin Inform, 2022, 52: 2270–2289

    MATH  Google Scholar 

  5. Chevalier F L, Savy L. Colored transmission for radar active antenna. In: Proceedings of the International Conference on Radar Systems RADAR, Toulouse, 2004

  6. de Maio A, Lops M, Venturino L. Diversity-integration tradeoffs in MIMO detection. IEEE Trans Signal Process, 2008, 56: 5051–5061

    MathSciNet  MATH  Google Scholar 

  7. Conte E, de Maio A, Ricci G. GLRT-based adaptive detection algorithms for range-spread targets. IEEE Trans Signal Process, 2002, 49: 1336–1348

    MATH  Google Scholar 

  8. Le Chevalier F, Petrov N. Diversity considerations in wideband radar detection of migrating targets in clutter. Sci China Inf Sci, 2019, 62: 040302

    Google Scholar 

  9. Shen M, He F, Dong Z, et al. Frequency diversity gain of a wideband radar signal. Remote Sens, 2021, 13: 4885

    MATH  Google Scholar 

  10. Kanter I. Exact detection probability for partially correlated rayleigh targets. IEEE Trans Aerosp Electron Syst, 1986, 22: 184–196

    MATH  Google Scholar 

  11. Dai F. Wideband radar signal processing — detection, clutter suppression and cognitive tracking (in Chinese). Dissertation for Ph.D. Degree. Xi’an: Xidian University, 2010

    MATH  Google Scholar 

  12. Li T. Study on some issues of wideband radar detection (in Chinese). Dissertation for Ph.D. Degree. Xi’an: Xidian University, 2011

    Google Scholar 

  13. Skolnik M. Attributes of the ubiquitous phased array radar. In: Proceedings of the IEEE International Symposium on Phased Array Systems and Technology, Boston, 2003. 101–106

  14. de Quevedo A D, Urzaiz F I, Menoyo J G, et al. Drone detection and RCS measurements with ubiquitous radar. In: Proceedings of the International Conference on Radar, Brisbane, 2018. 1–6

  15. Yu L, He F, Zhang Q L, et al. High maneuvering target long-time coherent integration and motion parameters estimation based on Bayesian compressive sensing. IEEE Trans Aerosp Electron Syst, 2023, 59: 4984–4999

    MATH  Google Scholar 

  16. Li J, Stoica P. MIMO radar with colocated antennas. IEEE Signal Process Mag, 2007, 24: 106–114

    MATH  Google Scholar 

  17. Ahmed S, Thompson J S, Petillot Y R, et al. Unconstrained synthesis of covariance matrix for MIMO radar transmit beampattern. IEEE Trans Signal Process, 2011, 59: 3837–3849

    MathSciNet  MATH  Google Scholar 

  18. Ahmed S, Thompson J S, Petillot Y R, et al. Finite alphabet constant-envelope waveform design for MIMO radar. IEEE Trans Signal Process, 2011, 59: 5326–5337

    MathSciNet  MATH  Google Scholar 

  19. Gong P C, Shao Z H, Tu G P, et al. Transmit beampattern design based on convex optimization for MIMO radar systems. Signal Process, 2014, 94: 195–201

    MATH  Google Scholar 

  20. He Z S, Li J, Liu H M, et al. Principles of collocated MIMO radar (in Chinese). In: MIMO Radar (Vol 1). Beijing: Nation Defense Industry Press, 2017

    MATH  Google Scholar 

  21. Wang H K, Liao G S, Xu J W, et al. Transmit beampattern design for coherent FDA by piecewise LFM waveform. Signal Process, 2019, 161: 14–24

    MATH  Google Scholar 

  22. Antonik P, Wicks M C, Griffiths H D, et al. Frequency diverse array radars. In: Proceedings of the IEEE Conference on Radar, Verona, 2006. 1–3

  23. Babur G, Aubry P, Le Chevalier F. Space-time radar waveforms: circulating codes. J Electrical Comput Eng, 2013, 2013: 1–8

    MathSciNet  Google Scholar 

  24. Xu J W, Lan L, Zhu S Q, et al. Design of matched filter for coherent FDA radar. Syst Eng Electron, 2018, 40: 9

    MATH  Google Scholar 

  25. Wang W Q. Range-angle dependent transmit beampattern synthesis for linear frequency diverse arrays. IEEE Trans Antennas Propagat, 2013, 61: 4073–4081

    MathSciNet  MATH  Google Scholar 

  26. Xu J W, Liao G S, Zhu S Q, et al. Joint range and angle estimation using MIMO radar with frequency diverse array. IEEE Trans Signal Process, 2015, 63: 3396–3410

    MathSciNet  MATH  Google Scholar 

  27. Lan L, Rosamilia M, Aubry A, et al. Single-snapshot angle and incremental range estimation for FDA-MIMO radar. IEEE Trans Aerosp Electron Syst, 2021, 57: 3705–3718

    MATH  Google Scholar 

  28. Xu J W, Zhu S Q, Liao G S. Range ambiguous clutter suppression for airborne FDA-STAP radar. IEEE J Sel Top Signal Process, 2015, 9: 1620–1631

    MATH  Google Scholar 

  29. Xu J W, Liao G S, So H C. Space-time adaptive processing with vertical frequency diverse array for range-ambiguous clutter suppression. IEEE Trans Geosci Remote Sens, 2016, 54: 5352–5364

    MATH  Google Scholar 

  30. Lan L, Xu J W, Liao G S, et al. Suppression of mainbeam deceptive jammer with FDA-MIMO radar. IEEE Trans Veh Technol, 2020, 69: 11584–11598

    MATH  Google Scholar 

  31. Lan L, Liao G S, Xu J W, et al. Mainlobe deceptive jammer suppression using element-pulse coding with MIMO radar. Signal Process, 2021, 182: 107955

    MATH  Google Scholar 

  32. Lan L, Marino A, Aubry A, et al. GLRT-based adaptive target detection in FDA-MIMO radar. IEEE Trans Aerosp Electron Syst, 2020, 57: 597–613

    MATH  Google Scholar 

  33. Yu L, He F, Su Y, et al. Transmitting strategy with high degrees of freedom for pulsed-coherent FDA radar. IET Radar Sonar Navi, 2022, 16: 659–667

    MATH  Google Scholar 

  34. Lan L, Liao G S, Xu J W, et al. Range-angle-dependent beamforming for FDA-MIMO radar using oblique projection. Sci China Inf Sci, 2022, 65: 152305

    MathSciNet  MATH  Google Scholar 

  35. Zeng L, Zhang Z J, Wang Y L, et al. Suppression of dense false target jamming for stepped frequency radar in slow time domain. Sci China Inf Sci, 2022, 65: 139301

    Google Scholar 

  36. Peebles P Z. Radar Principles. Chichester: John Wiley and Sons, 1999

    MATH  Google Scholar 

  37. Balasubramanian R, Ponnusamy S, Vuorinen M. Functional inequalities for the quotients of hypergeometric functions. J Math Anal Appl, 1998, 218: 256–268

    MathSciNet  MATH  Google Scholar 

  38. Shnidman D A. Determination of required SNR values. IEEE Trans Aerosp Electron Syst, 2002, 38: 1059–1064

    MATH  Google Scholar 

  39. Wang H K, Liao G S, Xu J W, et al. Subarray-based coherent pulsed-LFM frequency diverse array for range resolution enhancement. IET Signal Process, 2020, 14: 251–258

    MATH  Google Scholar 

  40. Wang H K, Liao G S, Xu J W, et al. Space-time matched filter design for interference suppression in coherent frequency diverse array. IET Signal Process, 2020, 14: 175–181

    MATH  Google Scholar 

  41. Mahafza B R. Radar System Analysis and Design Using MATLAB (vol 3), Chapter 13. Beijing: Publishing House of Electronics Industry, 2016

    MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (Grant Nos. 62271495, 42205142, 62101561). The author would like to thank Dr. Qilei ZHANG for providing the real measured wideband data acquired in Hefei international airport.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng He.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, L., He, F. & Su, Y. Multiscale observation in wide-spatial radar surveillance based on coherent FDA design. Sci. China Inf. Sci. 67, 122304 (2024). https://doi.org/10.1007/s11432-022-3816-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11432-022-3816-3

Keywords