Skip to main content
Log in

Optimizing evasive maneuvering of planes using a flight quality driven model

  • Research Paper
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

This paper investigates the optimal evasive maneuver for a plane to avoid an incoming missile. To accurately model the system dynamics while improving computational efficiency, a simplified plane model based on flight quality is established. A missile model with proportional guidance is also formulated. The problem of determining the optimal evasion plane maneuver is formulated. The Gauss pseudospectral method (GPM) is proposed as a solution to find the optimal maneuver. The optimized maneuver is validated by testing it on a high-fidelity 6-degree-of-freedom (6-DOF) model, which demonstrates the effectiveness of the proposed simplified plane model. The Monte Carlo method is employed to evaluate the capability of the plane to evade missiles in various scenarios and elucidate general principles for successful evasion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Bai T T, Wang D B. Cooperative trajectory optimization for unmanned aerial vehicles in a combat environment. Sci China Inf Sci, 2019, 62: 010205

    Article  Google Scholar 

  2. Ding J F, Si G Y, Ma J, et al. Mission evaluation: expert evaluation system for large-scale combat tasks of the weapon system of systems. Sci China Inf Sci, 2018, 61: 012106

    Article  Google Scholar 

  3. Borck H, Karneeb J, Alford R, et al. Case-based behavior recognition in beyond visual range air combat. In: Proceedings of the 28th International Flairs Conference, 2015

  4. Ramirez M, Papasimeon M, Lipovetzky N, et al. Integrated hybrid planning and programmed control for real time UAV maneuvering. In: Proceedings of the 17th International Conference on Autonomous Agents and Multiagent Systems, 2018. 1318–1326

  5. Li S, Chen M, Wang Y, et al. Air combat decision-making of multiple UCAVs based on constraint strategy games. Defence Tech, 2022, 18: 368–383

    Article  Google Scholar 

  6. Ruan W, Duan H, Deng Y. Autonomous maneuver decisions via transfer learning pigeon-inspired optimization for UCAVs in dogfight engagements. IEEE CAA J Autom Sin, 2022, 9: 1639–1657

    Article  Google Scholar 

  7. McGrew J S, How J P, Williams B, et al. Air-combat strategy using approximate dynamic programming. J Guidance Control Dyn, 2010, 33: 1641–1654

    Article  ADS  Google Scholar 

  8. Piao H, Han Y, Chen H, et al. Complex relationship graph abstraction for autonomous air combat collaboration: a learning and expert knowledge hybrid approach. Expert Syst Appl, 2023, 215: 119285

    Article  Google Scholar 

  9. Wang L, Guo Y, Zhang Q, et al. Suggestion for aircraft flying qualities requirements of a short-range air combat mission. Chin J Aeronautics, 2017, 30: 881–897

    Article  Google Scholar 

  10. Xie R, Li J, Luo D. Research on maneuvering decisions for multi-UAVs air combat. In: Proceedings of the 11th IEEE International Conference on Control & Automation (ICCA), 2014. 767–772

  11. Wang Q, Wang Y Z. Cluster synchronization of a class of multi-agent systems with a bipartite graph topology. Sci China Inf Sci, 2014, 57: 012203

    MathSciNet  Google Scholar 

  12. Sun Z, Piao H, Yang Z, et al. Multi-agent hierarchical policy gradient for air combat tactics emergence via self-play. Eng Appl Artif Intelligence, 2021, 98: 104112

    Article  Google Scholar 

  13. Ma L, Lin B, Zhang W, et al. A survey of research on the distributed cooperation method of the UAV swarm based on swarm intelligence. In: Proceedings of IEEE 13th International Conference on Software Engineering and Service Science (ICSESS), 2022. 305–309

  14. Hu J, Wang L, Hu T, et al. Autonomous maneuver decision making of dual-UAV cooperative air combat based on deep reinforcement learning. Electronics, 2022, 11: 467

    Article  Google Scholar 

  15. Kong W, Zhou D, Yang Z, et al. Maneuver strategy generation of UCAV for within visual range air combat based on multi-agent reinforcement learning and target position prediction. Appl Sci, 2020, 10: 5198

    Article  CAS  Google Scholar 

  16. Huang C Q, Dong K S, Huang H Q, et al. Autonomous air combat maneuver decision using Bayesian inference and moving horizon optimization. J Syst Eng Electron, 2018, 29: 86–97

    Article  Google Scholar 

  17. Zhang R, Zhang J, Yu H. Review of modeling and control in UAV autonomous maneuvering flight. In: Proceedings of IEEE International Conference on Mechatronics and Automation (ICMA), 2018. 1920–1925

  18. Austin F, Carbone G, Falco M, et al. Automated maneuvering decisions for air-to-air combat. In: Proceedings of Guidance, Navigation and Control Conference, 1987. 2393

  19. Park H, Lee B Y, Tahk M J, et al. Differential game based air combat maneuver generation using scoring function matrix. Int J Aeronaut Space Sci, 2016, 17: 204–213

    Article  Google Scholar 

  20. Liu P, Ma Y. A deep reinforcement learning based intelligent decision method for UCAV air combat. In: Proceedings of Asian Simulation Conference, 2017. 274–286

  21. Horie K, Conway B A. Optimal fighter pursuit-evasion maneuvers found via two-sided optimization. J Guidance Control Dyn, 2006, 29: 105–112

    Article  ADS  Google Scholar 

  22. Karelahti J, Virtanen K, Raivio T. Near-optimal missile avoidance trajectories via receding horizon control. J Guidance Control Dyn, 2007, 30: 1287–1298

    Article  ADS  Google Scholar 

  23. Wang Z, Li H, Wu H, et al. Improving maneuver strategy in air combat by alternate freeze games with a deep reinforcement learning algorithm. Math Problems Eng, 2020, 2020: 1–17

    Google Scholar 

  24. Ong S Y, Pierson B L. Optimal evasive aircraft maneuvers against a surface-to-air missile. In: Proceedings of the 1st IEEE Regional Conference on Aerospace Control Systems, 1993. 475–482

  25. Turetsky V, Shinar J. Missile guidance laws based on pursuit-evasion game formulations. Automatica, 2003, 39: 607–618

    Article  MathSciNet  Google Scholar 

  26. Imado F, Kuroda T. Family of local solutions in a missile-aircraft differential game. J Guidance Control Dyn, 2011, 34: 583–591

    Article  ADS  Google Scholar 

  27. Carr R W, Cobb R G, Pachter M, et al. Solution of a pursuit-evasion game using a near-optimal strategy. J Guidance Control Dyn, 2018, 41: 841–850

    Article  ADS  Google Scholar 

  28. Imado F, Kuroda T. Engagement tactics for two missiles against an optimally maneuvering aircraft. J Guidance Control Dyn, 2011, 34: 574–582

    Article  ADS  Google Scholar 

  29. Hu J, Prandini M, Sastry S. Optimal coordinated maneuvers for three-dimensional aircraft conflict resolution. J Guidance Control Dyn, 2002, 25: 888–900

    Article  ADS  Google Scholar 

  30. Yang Q, Zhu Y, Zhang J, et al. UAV air combat autonomous maneuver decision based on DDPG algorithm. In: Proceedings of IEEE 15th International Conference on Control and Automation (ICCA), 2019. 37–42

  31. Liu G, Li B, Ji Y. A modified HP-adaptive pseudospectral method for multi-UAV formation reconfiguration. ISA Trans, 2022, 129: 217–229

    Article  PubMed  Google Scholar 

  32. Xin B, Chen J, Peng Z H, et al. An adaptive hybrid optimizer based on particle swarm and differential evolution for global optimization. Sci China Inf Sci, 2010, 53: 980–989

    Article  MathSciNet  Google Scholar 

  33. Imado F. Some practical approaches to pursuit-evasion dynamic games. Cybernetics Syst Anal, 2002, 38: 276–291

    Article  MathSciNet  Google Scholar 

  34. Chong E K, Zak S H. An Introduction to Optimization. Hoboken: John Wiley & Sons, 2013

    Google Scholar 

  35. Singh A. An overview of the optimization modelling applications. J Hydrol, 2012, 466–467: 167–182

    Article  Google Scholar 

  36. Huntington G T, Rao A V. Optimal reconfiguration of spacecraft formations using the Gauss pseudospectral method. J Guidance Control Dyn, 2008, 31: 689–698

    Article  ADS  Google Scholar 

  37. Xu B, Wang X, Sun F C, et al. Intelligent control of flexible hypersonic flight dynamics with input dead zone using singular perturbation decomposition. IEEE Trans Neural Networks Learn Syst, 2023, 34: 5926–5936

    Article  MathSciNet  Google Scholar 

  38. Xu B, Shou Y X, Wang X, et al. Finite-time composite learning control of strict-feedback nonlinear system using historical stack, IEEE Trans Cybern, 2023, 53: 5777–5787

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The work was supported by National Natural Science Foundation of China (Grant No. 61933010) and Natural Science Basic Research Plan in Shaanxi Province (Grant No. 2023JC-XJ-08).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin Xu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, C., Sun, S., Tao, C. et al. Optimizing evasive maneuvering of planes using a flight quality driven model. Sci. China Inf. Sci. 67, 132206 (2024). https://doi.org/10.1007/s11432-023-3848-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11432-023-3848-6

Keywords

Navigation