Skip to main content
Log in

Global adaptive output-feedback tracking with prescribed performance for uncertain nonlinear systems

  • Research Paper
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

At present, one typical control strategy for guaranteeing transient and steady-state performance is funnel control and prescribed performance control. The strategy features completely discarding the system nonlinearities, even if they are completely known and available. Such an intrinsic feature requires the controller to produce a larger control effect to eliminate the negative impact caused by the high nonlinearities, leading to a conservative controller. In this paper, we fully take advantage of known information on nonlinearities in control design, instead of completely discarding it as done in funnel control. Particularly, we leverage adaptive techniques (i.e., high-gain dynamic compensation) to deal with unknown system nonlinearities. Meanwhile, we integrate the tools of output feedback, tracking control, and the performance guarantee. As such, an adaptive output-feedback scheme is developed for global tracking with spatiotemporal performance specifications: arbitrarily given tracking accuracy and accuracy-ensured time. A simulation example supports the developed approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ilchmann A, Ryan E P, Sangwin C J. Tracking with prescribed transient behaviour. ESAIM-COCV, 2002, 7: 471–493

    Article  MathSciNet  Google Scholar 

  2. Ilchmann A, Ryan E P, Townsend P. Tracking with prescribed transient behavior for nonlinear systems of known relative degree. SIAM J Control Optim, 2007, 46: 210–230

    Article  MathSciNet  Google Scholar 

  3. Chowdhury D, Khalil H K. Funnel control for nonlinear systems with arbitrary relative degree using high-gain observers. Automatica, 2019, 105: 107–116

    Article  MathSciNet  Google Scholar 

  4. Li F, Liu Y. Global output-feedback stabilization with prescribed convergence rate for nonlinear systems with structural uncertainties. Syst Control Lett, 2019, 134: 104521

    Article  MathSciNet  Google Scholar 

  5. Bechlioulis C P, Rovithakis G A. A low-complexity global approximation-free control scheme with prescribed performance for unknown pure feedback systems. Automatica, 2014, 50: 1217–1226

    Article  MathSciNet  Google Scholar 

  6. Dimanidis I S, Bechlioulis C P, Rovithakis G A. Output feedback approximation-free prescribed performance tracking control for uncertain MIMO nonlinear systems. IEEE Trans Autom Control, 2020, 65: 5058–5069

    Article  MathSciNet  Google Scholar 

  7. Zhao K, Song Y, Chen C L P, et al. Adaptive asymptotic tracking with global performance for nonlinear systems with unknown control directions. IEEE Trans Autom Control, 2021, 67: 1566–1573

    Article  MathSciNet  Google Scholar 

  8. Lv M, Chen Z, De Schutter B, et al. Prescribed-performance tracking for high-power nonlinear dynamics with time-varying unknown control coefficients. Automatica, 2022, 146: 110584

    Article  MathSciNet  Google Scholar 

  9. Liang H, Du Z, Huang T, et al. Neuroadaptive performance guaranteed control for multiagent systems with power integrators and unknown measurement sensitivity. IEEE Trans Neural Netw Learn Syst, 2023, 34: 9771–9782

    Article  MathSciNet  Google Scholar 

  10. Liang H, Chen L, Pan Y, et al. Fuzzy-based robust precision consensus tracking for uncertain networked systems with cooperative-antagonistic interactions. IEEE Trans Fuzzy Syst, 2023, 31: 1362–1376

    Article  Google Scholar 

  11. Wang Y, Liu Y. Global practical tracking via adaptive output feedback for uncertain nonlinear systems without polynomial constraint. IEEE Trans Autom Control, 2021, 66: 1848–1855

    Article  MathSciNet  Google Scholar 

  12. Yan X H, Liu Y G. Global practical tracking for high-order uncertain nonlinear systems with unknown control directions. SIAM J Control Optim, 2010, 48: 4453–4473

    Article  MathSciNet  Google Scholar 

  13. Liu Y H, Su C Y, Li H. Adaptive output feedback funnel control of uncertain nonlinear systems with arbitrary relative degree. IEEE Trans Autom Control, 2021, 66: 2854–2860

    Article  MathSciNet  Google Scholar 

  14. Ryan E P. A nonlinear universal servomechanism. IEEE Trans Autom Control, 1994, 39: 753–761

    Article  MathSciNet  Google Scholar 

  15. Ye X D. Universal λ-tracking for nonlinearly-perturbed systems without restrictions on the relative degree. Automatica, 1999, 35: 109–119

    Article  MathSciNet  Google Scholar 

  16. Qian C J, Lin W. Output feedback control of a class of nonlinear systems: a nonseparation principle paradigm. IEEE Trans Autom Control, 2002, 47: 1710–1715

    Article  MathSciNet  Google Scholar 

  17. Praly L, Jiang Z P. Linear output feedback with dynamic high gain for nonlinear systems. Syst Control Lett, 2004, 53: 107–116

    Article  MathSciNet  Google Scholar 

  18. Krishnamurthy P, Khorrami F. Dynamic high-gain scaling: state and output feedback with application to systems with ISS appended dynamics driven by all states. IEEE Trans Autom Control, 2004, 49: 2219–2239

    Article  MathSciNet  Google Scholar 

  19. Jia X, Xu S, Zhou S. Adaptive output feedback control of nonlinear systems: a dynamic-gain scaling approach. IEEE Trans Autom Control, 2023, 68: 5150–5157

    Article  MathSciNet  Google Scholar 

  20. Kokotović P, Arcak M. Constructive nonlinear control: a historical perspective. Automatica, 2001, 37: 637–662

    Article  MathSciNet  Google Scholar 

  21. Astolfi A, Karagiannis D, Ortega R. Nonlinear and Adaptive Control with Applications. Berlin: Springer, 2007

    Google Scholar 

  22. Fossen T I. Guidance and Control of Ocean Vehicles. San Francisco: John Wiley & Sons, 1999

    Google Scholar 

  23. Mazenc F, Praly L, Dayawansa W P. Global stabilization by output feedback: examples and counterexamples. Syst Control Lett, 1994, 23: 119–125

    Article  MathSciNet  Google Scholar 

  24. Marino R, Tomei P. Global adaptive output-feedback control of nonlinear systems. II. Nonlinear parameterization. IEEE Trans Autom Control, 1993, 38: 33–48

    Article  MathSciNet  Google Scholar 

  25. Krstić M, Kanellakopoulos I, Kokotović P V. Nonlinear and Adaptive Control Design. San Francisco: John Wiley & Sons, 1995

    Google Scholar 

  26. Xing L, Wen C, Liu Z, et al. Event-triggered output feedback control for a class of uncertain nonlinear systems. IEEE Trans Autom Control, 2019, 64: 290–297

    Article  MathSciNet  Google Scholar 

  27. Chen J Y, Li Z H, Ding Z T. Adaptive output regulation of uncertain nonlinear systems with unknown control directions. Sci China Inf Sci, 2019, 62: 089205

    Article  MathSciNet  Google Scholar 

  28. Chen K, Astolfi A. Adaptive control for systems with time-varying parameters. IEEE Trans Autom Control, 2021, 66: 1986–2001

    Article  MathSciNet  Google Scholar 

  29. Wang Y, Liu Y G. Adaptive output-feedback tracking for nonlinear systems with unknown control direction and generic inverse dynamics. Sci China Inf Sci, 2022, 65: 182204

    Article  MathSciNet  Google Scholar 

  30. Jiang Z P, Mareels I, Hill D J, et al. A unifying framework for global regulation via nonlinear output feedback: from ISS to iISS. IEEE Trans Autom Control, 2004, 49: 549–562

    Article  MathSciNet  Google Scholar 

  31. Hale J K. Ordinary Differential Equations. 2nd ed. Hoboken: Wiley-Interscience, 1980

    Google Scholar 

  32. Krishnamurthy P, Khorrami F, Krstic M. Adaptive output-feedback stabilization in prescribed time for nonlinear systems with unknown parameters coupled with unmeasured states. Adaptive Control Signal, 2021, 35: 184–202

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported in part by National Natural Science Foundation of China (Grant No. 62033007), Taishan Scholars Climbing Program of Shandong Province, and Major Fundamental Research Program of Shandong Province (Grant No. ZR2023ZD37).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yungang Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Liu, Y. Global adaptive output-feedback tracking with prescribed performance for uncertain nonlinear systems. Sci. China Inf. Sci. 67, 152201 (2024). https://doi.org/10.1007/s11432-023-3948-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11432-023-3948-y

Keywords

Navigation