Skip to main content
Log in

Computer simulation of wild-type and mutant human cardiac Na+ current

  • ORIGINAL ARTICLE
  • Published:
Medical and Biological Engineering and Computing Aims and scope Submit manuscript

Abstract

Long QT syndrome (LQTS) and Brugada syndrome (BrS) are inherited diseases predisposing to ventricular arrhythmias and sudden death. Genetic studies linked LQTS and BrS to mutations in genes encoding for cardiac ion channels. Recently, two novel missense mutations at the same codon in the gene encoding the cardiac Na+ channel (SCN5A) have been identified: Y1795C (causing the LQTS phenotype) and Y1795H (causing the BrS phenotype). Functional studies in HEK293 cells showed that both mutations alter the inactivation of Na+ current and cause a sustained Na+ current upon depolarisation. In this paper, a nine state Markov model was used to simulate the Na+ current in wild-type Na+ cardiac channel and the current alterations observed in Y1795C and Y1795H mutant channels. The model includes three distinct closed states, a conducting open state and five inactivation states (one fast-, two intermediate- and two closed-inactivation). Transition rates between these states were identified on the basis of previously published voltage-clamp experiments. The model was able to reproduce the experimental Na+ current in mutant channels just by altering the assignment of model parameters with respect to wild-type case. Parameter assignment was validated by performing action potential clamp experiments and comparing experimental and simulated I Na current. The Markov model was subsequently introduced in the Luo–Rudy model of ventricular myocyte to investigate “in silico” the consequences on the ventricular cell action potential of the two mutations. Coherently with their phenotypes, the Y1795C mutation prolongs the action potential, while the Y1795H mutation causes only negligible changes in action potential morphology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Antzelevitch C (2002) Late potentials and the Brugada syndrome. J Am Coll Cardiol 39:1996–1999

    Article  PubMed  Google Scholar 

  2. Antzelevitch C, Brugada P, Brugada R, Brugada W, Shimizu I, Gussak AR, Perez riera AR (2002) Brugada syndrome a decade of progress. Circ Res 91:1114–1118

    Article  PubMed  Google Scholar 

  3. Antzelevitch C, Brugada P, Brugada J, Brugada R., Towbin JA, Nademanee K (2003) Brugada syndrome:1992–2002 a historical perspective. J Am Coll Cardiol 41:1665–1671

    Article  PubMed  Google Scholar 

  4. Balser JR (2001) The cardiac sodium channel: gating function and molecular pharmacology. J Mol Cell Cardiol 33:599–613

    Article  PubMed  Google Scholar 

  5. Benndorf K, Nilius B (1987) Inactivation of sodium channels in isolated myocardial mouse cells. Eur Biophys J 15:117–127

    Article  PubMed  Google Scholar 

  6. Bezzina CR, Rook MB, Wilde AA (2001) Cardiac sodium channel and inherited arrhythmia syndromes. Cardiovasc Res 49:257–271

    Article  PubMed  Google Scholar 

  7. Bondarenko VE, Szigeti GP, Bett GCL, Kim SJ, Rasmusson RL (2004) Computer model of action potential of mouse ventricular myocytes. Am J Physiol Heart Circ Physiol 287:H1378–H1403

    Article  PubMed  Google Scholar 

  8. Brugada P, Brugada J (1992) Right bundle branch block, persistent ST segment elevation and sudden cardiac death: a distinct clinical and electrocardiographic syndrome. A multicenter report. J Am Coll Cardiol 15:1391–1396

    Article  Google Scholar 

  9. Clancy CE, Rudy Y (1999) Linking a genetic defect to its cellular phenotype in a cardiac arrhythmia. Nature 400:566–569

    Article  PubMed  Google Scholar 

  10. Clancy CE, Tateyama M, Kass RS (2002a) Insights into the molecular mechanisms of bradycardia-triggered arrhythmias in long QT-3 syndrome. J Clin Invest 110:1251–1262

    Article  Google Scholar 

  11. Clancy CE, Rudy Y (2002b) Na(+) channel mutation that causes both Brugada and long-QT syndrome phenotypes: a simulation study of mechanism. Circulation 105:1208–1213

    Article  Google Scholar 

  12. Colquhoun D, Hawkes AG (1977) Relaxation and fluctuations of membrane currents that flow through drug-operated channels. Proc R Soc Lond B Biol Sci 199:231–262

    Article  PubMed  Google Scholar 

  13. Dumaine R, Wang Q, Keating MT, Hartmann HA, Schwartz PJ, Brown AM, Kirsch GE (1996) Multiple mechanisms of Na+ channel-linked long-QT syndrome. Circ Res 78:916–924

    PubMed  Google Scholar 

  14. Dumaine R, Towbin JA, Brugada P, Vatta M, Nesterenko DV, Nesterenko VV, Brugada J, Brugada R, Antzelevitch C (1999) Ionic mechanisms responsible for the electrocardiographic phenotype of the Brugada syndrome are temperature dependent. Circ Res 85:803–809

    PubMed  Google Scholar 

  15. Faber GM, Rudy Y (2000) Action potential and contractility changes in [Na(+)](i) overloaded cardiac myocytes: a simulation study. Biophys J 78:2392–2404

    PubMed  Google Scholar 

  16. Gima K, Rudy Y (2002) Ionic current basis of electrocardiographic waveforms: a model study. Circ Res 90:889–896

    Article  PubMed  Google Scholar 

  17. Grant AO (2001) Molecular biology of sodium channels and their role in cardiac arrhythmias. Am J Med 110:296–305

    Article  PubMed  Google Scholar 

  18. Hille B (1991) Ionic channel of excitable membranes. Sinauer Associates, Inc, Sunderland

    Google Scholar 

  19. Horn R, Vandenberg CA (1984) Statistical properties of single sodium channels. J Gen Physiol 84:505–534

    Article  PubMed  Google Scholar 

  20. Irvine LA, Jafri MS, Winslow RL (1999) Cardiac sodium channel Markov model with temperature dependence and recovery from inactivation. Biophys J 76:1868–1885

    PubMed  Google Scholar 

  21. Lagarias JC, Reeds JA, Wright MH, Wright PE (1998) Convergence properties of the Nelder–Mead simplex method in low dimensions. SIAM J Optimiz 9:112–147

    Article  MATH  MathSciNet  Google Scholar 

  22. Lehmann H, Jurkat R (1999) Voltage-gated ion channels and hereditary disease. Physiol Rev 79:1317–1372

    PubMed  Google Scholar 

  23. Marban E (2002) Cardiac channelopathies. Nature 415:213–218

    Article  PubMed  Google Scholar 

  24. Rivolta I, Abriel H, Tateyama M, Liu H, Memmi M, Vardas P, Napolitano C, Priori SG, Kass RS (2001) Inherited Brugada and long QT-3 syndrome mutations of a single residue of the cardiac sodium channel confer distinct channel and clinical phenotypes. J Biol Chem 276:30623–30630

    Article  PubMed  Google Scholar 

  25. Rivolta I, Clancy CE, Tateyama M, Liu H, Priori SG, Kass RS (2002) A novel SCN5A mutation associated with long QT-3: altered inactivation kinetics and channel dysfunction. Physiol Genomics 10:191–197

    PubMed  Google Scholar 

  26. Scanley BE, Hanck DA, Chay T, Fozzard HA (1990) Kinetic analysis of single sodium channels from canine cardiac Purkinje cells. J Gen Physiol 95:411–437

    Article  PubMed  Google Scholar 

  27. Schwarz JR (1986) The effect of temperature on Na currents in rat myelinated nerve fibres. Pflugers Arch 406:397–404

    Article  PubMed  Google Scholar 

  28. Severi S, Vecchietti S, Rivolta I, Napolitano S, Priori S, Cavalcanti S (2003) Action potential changes due to Y1795H mutation in Brugada syndrome patients: a simulation study. Comput Cardiol 30:437–440

    Article  Google Scholar 

  29. Shampine LF, Reichelt MW (1997) The MATLAB ODE suite. SIAM J Sci Comput 18:1–22

    Article  MATH  MathSciNet  Google Scholar 

  30. Shimizu W, Antzelevitch C (1997) Sodium channel block with mexiletine is effective in reducing dispersion of repolarization and preventing torsade des pointes in LQT2 and LQT3 models of the long-QT syndrome. Circulation 96:2038–2047

    PubMed  Google Scholar 

  31. Spach MS, Heidlage JF, Barr RC, Dolber PC (2004) Cell size and communication: role in structural and electrical development and remodeling of the heart. Heart Rhythm 1:500–515

    Article  PubMed  Google Scholar 

  32. Tateyama M, Kurokawa J, Terrenoire C, Rivolta I, Kass RS (2003) Stimulation of protein kinase C inhibits bursting in disease-linked mutant human cardiac sodium channels. Circulation 107:3216–3222

    Article  PubMed  Google Scholar 

  33. Ten Tusscher KHWJ, Noble D, Noble PJ, Panfilov AV (2004) A model for human ventricular tissue. Am J Physiol Heart Circ Physiol 286:H1573–H1589

    Article  PubMed  Google Scholar 

  34. Tukkie R, Sogaard P, Vleugels J, de Groot IK, Wilde AA, Tan HL (2004) Delay in right ventricular activation contributes to Brugada syndrome. Circulation 109:1272–1277

    Article  PubMed  Google Scholar 

  35. Vandeberg C, Bezanilla F (1991) A sodium channel gating model based on single channel, macroscopic ionic, and gating currents in the squid giant axon. Biophys J 60:1511–1533

    PubMed  Google Scholar 

  36. Vecchietti S, Rivolta I, Severi S, Napolitano C, Priori SG, Cavalcanti S (2003) ‘Markovian model for wild-type and mutant (Y1795C and Y1795H) human cardiac Na channel. Comput Cardiol 30:283–286

    Article  Google Scholar 

  37. Veldkamp MW, Viswanathan PC, Bezzina C, Baartscheer A, Wilde AA, Balser JR (2000) Two distinct congenital arrhythmias evoked by a multidysfunctional Na(+) channel. Circ Res 86:E91–E97

    PubMed  Google Scholar 

  38. Viswanathan PC, Shaw RM, Rudy Y (1999) Effects of IKr and IKs heterogeneity on action potential duration and its rate dependence: a simulation study. Circulation 99:2466–2474

    PubMed  Google Scholar 

  39. Yan GX, Antzelevitch C (1999) Cellular basis for the Brugada syndrome and other mechanisms of arrhythmogenesis associated with ST-segment elevation. Circulation 100:1660–1666

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Silvio Cavalcanti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vecchietti, S., Rivolta, I., Severi, S. et al. Computer simulation of wild-type and mutant human cardiac Na+ current. Med Bio Eng Comput 44, 35–44 (2006). https://doi.org/10.1007/s11517-005-0017-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-005-0017-x

Keywords

Navigation