Skip to main content
Log in

Theoretical modeling of micro-scale biological phenomena in human coronary arteries

  • Original Article
  • Published:
Medical and Biological Engineering and Computing Aims and scope Submit manuscript

Abstract

This paper presents a mathematical model of biological structures in relation to coronary arteries with atherosclerosis. A set of equations has been derived to compute blood flow through these transport vessels with variable axial and radial geometries. Three-dimensional reconstructions of diseased arteries from cadavers have shown that atherosclerotic lesions spiral through the artery. The theoretical framework is able to explain the phenomenon of lesion distribution in a helical pattern by examining the structural parameters that affect the flow resistance and wall shear stress. The study is useful for connecting the relationship between the arterial wall geometries and hemodynamics of blood. It provides a simple, elegant and non-invasive method to predict flow properties for geometrically complex pathology at micro-scale levels and with low computational cost.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Ang KC, Mazumdar JN (1995) Mathematical modelling of triple arterial stenoses. Aust Phys Eng Sci Med 18:89–94

    Google Scholar 

  2. Aroesty J, Gross JF (1972) Pulsatile flow in small blood vessels—I, Casson Theory. Biorheology 9:33–43

    Google Scholar 

  3. Baaijens JP, van Steenhoven AA, Janssen JD (1993) Numerical analysis of steady generalized newtonian blood flow in a 2d model of the carotid artery bifurcation. Biorheology 30(1):63–74

    Google Scholar 

  4. Banerjee RK, Back LH, Back MR, Cho YI (2000) Physiological flow simulation in residual human stenoses after coronary angioplasty. J Biomech Eng 122(4):310–320

    Article  Google Scholar 

  5. Berger SA., Jou LD (2000) Flows in stenotic vessels. Ann Rev Fluid Mech 32:347–382

    Article  MATH  MathSciNet  Google Scholar 

  6. Bingham E (1922) Fluidity and plasticity. MacGraw Hill, New York

  7. Casson N (1959) A flow equation for pigment oil suspensions of the printing ink type, rheology of dispersive systems. In: Mills CC (ed) Pergamon press

  8. Chakravarty S, Datta A (1992) Dynamic response of stenotic blood flow in vivo. Math Comput Model 16:3–20

    Article  MATH  Google Scholar 

  9. Cokelet GR (1972) Biomechanics, its foundations and objectives, chap. The rheology of human blood. Prentice-Hall, pp 63–87

  10. Davies, MJ (1996) Stability and instability: two faces of coronary atherosclerosis. Circulation 94:2013–2020

    Google Scholar 

  11. Davies, MJ, Thomas AC (1985) Plaque fissuring-the cause of acute myocardial infarction, sudden ischaemic death, and crescendo angina. Br Heart J 53(4):363–373

    Google Scholar 

  12. Falk E, Shah PK, Fuster V (1995) Coronary plaque disruption. Circulation 92:657–671

    Google Scholar 

  13. Forrester J, Young D (1970) Flow through a converging diverging tube and its implications in occulsive vascular disease– I. J Biomech 3:297–305

    Article  Google Scholar 

  14. Fox B, James K, Morgan B, Seed A (1982) Distribution of fatty and fibrous plaques in young human coronary arteries. Atherosclerosis 4:337–347

    Article  Google Scholar 

  15. Gertz S, Roberts WC (1990) Hemodynamic shear force in rupture of coronary arterial atherosclerotic plaques. Am J Cardiol 66:1368–1372

    Article  Google Scholar 

  16. Gertz SD, Uretzky G, Wajnberg RS, Navot N, Gotsman MS (1981) Endothelial cell damage and thrombus formation after partial arterial constriction: relevance to the role of coronary artery spasm in the pathogenesis of myocardial infarction. Circulation 63:476–486

    Google Scholar 

  17. Glagov S, Weisenberd E, Zarins C, Kolettis RG (1987) Compensatory enlargement of human atherosclerotic coronary arteries. N Engl J Med 316:1371–1375

    Article  Google Scholar 

  18. Herschel H, Bulkey R (1926) Konsistenzmessungen von gummi-benzollosungen. Koll Zeitschr 23:291–300

    Article  Google Scholar 

  19. Kaazempur-Mofrad MR, Isasi AG, Younis HF, Chan RC, Hinton DP, Sukhova G, LaMuraglia GM, Lee RT, Kamm RD (2004) Characterization of the atherosclerotic carotid bifurcation using mri, finite element modeling, and histology. Ann Biomed Eng 32(7):932–946

    Article  Google Scholar 

  20. Kirkeeide RL, Gould KL, Parsel L (1986) Assessment of coronary stenoses by myocardial perfusion imaging during pharmocologic coronary vascodilation. J Am Coll Cardiol 7:103–113

    Google Scholar 

  21. MacDonald D (1979) On steady flow through modelled vascular stenoses. J Biomech 12:13–20

    Article  Google Scholar 

  22. MacIsaac AI, Thomas JD, Topol EJ (1993) Toward the quiescent coronary plaque. J Am Coll Cardiol 22:1228–1241

    Article  Google Scholar 

  23. Mann JM, Davies MJ (1996) Vulnerable plaque—relation of characteristics to degree of stenosis in human coronary arteries. Circulation 94:928–931

    Google Scholar 

  24. Mazumdar JN (1992) Biofluid mechanics. World Scientific N. J. USA

  25. Mernone AV, Mazumdar JN (2000) Biomathematical modelling of physiological fluids using a casson fluid with emphasis to peristalsis. Aust Phys Eng Sci Med. 23(3):94–100

    Google Scholar 

  26. Morris C, Smith C, Blackshear P (1987) A new method for measuring the yield stress in thin layers of sedimenting blood. Biophys J 52:229–240

    Article  Google Scholar 

  27. Pincombe B (1998) A study of non-newtonian behaviour of blood flow through stenosed arteries. Ph.D. thesis, University of Adelaide

  28. Pincombe B, Mazumdar JN (1995) A mathematical study of blood flow through viscoelastic walled stenosed arteries. Aust Phys Eng Sci Med 18:81–88

    Google Scholar 

  29. Pincombe, B, Mazumdar JN (1997) The effects of post-stenotic dilatations on the flow of a blood analogue through stenosed coronary arteries. Math Comput Model 25:57–70

    Article  MATH  MathSciNet  Google Scholar 

  30. Pincombe B, Mazumdar JN (1998) Herschel-bulkley and casson flow through viscoelastic walled stenosed arteries. In: Tuck EO, Stott JAK (eds) EMAC’98, The Institute of Engineers, Australia, pp 399–402

  31. Pincombe B, Mazumdar JN (1998) Numerical model of power law flow through an atherosclerotic artery. In: Noye BJ, Teubner MD (eds) CTAC’97, World Scientific Press, pp 563–570

  32. Pincombe B, Mazumdar JN (2002) Techniques for the study of blood flow through both constrictions and post-stenotic dilatations in arteries. Handbook of computational methods in biomaterials, biotechnology and biomedical systems. Kluwer, Dorchet

  33. Poiseuille J (1836) Observations of blood flow. Ann Sci Nat STrie 5, 2

    Google Scholar 

  34. Reiber JHC, van der Zwet PMJ, von Land CD, Koning G, Loois G, Zorn I, van den Brand M, Gerbrands JJ (1989) On-line quantification of coronary angiograms with the dci system. Medicamundi 34:89–98

    Google Scholar 

  35. Rodbard S, Ikeeda K, Montes M (1967) An analysis of mechanisms of post stenotic dilation. Angiology 18:349–367

    Google Scholar 

  36. Seo HS, Lombardi DM, Polinsky P, Powell-Braxton L, Bunting S, Schwartz SM, Rosenfeld ME (1997) Peripheral vascular stenosis in apolipoprotein e-deficient mice: potential roles of lipid deposition. Medial atrophy, and adventitial inflammation. Arterioscler Thromb Vasc Biol 17:3593–3601

    Google Scholar 

  37. Shukla JB, Parihar RS, Rao BRP (1980) Effects of stenosis on non-newtonian flow in an artery. Bull Math Biol 42:283–294

    MATH  Google Scholar 

  38. Tang D, Yang C, Zheng J, Woodard PK, Sicard GA, Saffitz JE, Yuan C (2004) 3d mri-based multicomponent fsi models for atherosclerotic plaques. Ann Biomed Eng 32(7):947–960

    Article  Google Scholar 

  39. Wensing JW, Meiss L, Mali PTM, Hillen B (1998) Early atherosclerotic lesions spiraling through the femoral artery. Arterioscler Thromb Vasc Biol 18:1554–1558

    Google Scholar 

  40. Wong KKL, Mazumdar JN, Abbott D (2005) A study of relationship between geometrical variation of atherosclerotic arteries and flow resistance. In: 12th International conference on biomedical engineering. CD only

  41. Worthley SG, Helft G, Fuster V, Fayad ZA, Fallon JT, Osende JI, Roque M, Shinnar M, Zaman AG, Rodriguez OJ (2000) High resolution ex vivo magnetic resonance imaging of in situ coronary and aortic atherosclerotic plaque in a porcine model. Atherosclerosis 150(2):321–329

    Article  Google Scholar 

  42. Worthley SG, Helft G, Fuster V, Zaman AG, Fayad ZA, Fallon JT, Badimon JJ (2000) Serial in vivo mri documents arterial remodeling in experimental atherosclerosis. Circulation 101(6):586–589

    Google Scholar 

  43. Worthley SG, Omar-Farouque HM, Helft G, Meredith IT (2002) Coronary artery imaging in the new millennium. Heart Lung Circ 11(1):19–25

    Article  Google Scholar 

  44. Young D (1968) Effect of a time dependent stenosis on flow through a tube. J Eng Ind Trans Am Soc Mech Eng 90:248–254

    Google Scholar 

  45. Zohdi TI (2005) A simple model for shear stress mediated lumen reduction in blood vessels. Biomech Model Mechanobiol 4(1):57–61

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kelvin Wong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wong, K., Mazumdar, J., Pincombe, B. et al. Theoretical modeling of micro-scale biological phenomena in human coronary arteries. Med Bio Eng Comput 44, 971–982 (2006). https://doi.org/10.1007/s11517-006-0113-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-006-0113-6

Keywords