Skip to main content
Log in

Design of electrodes and current limits for low frequency electrical impedance tomography of the brain

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

For the novel application of recording of resistivity changes related to neuronal depolarization in the brain with electrical impedance tomography, optimal recording is with applied currents below 100 Hz, which might cause neural stimulation of skin or underlying brain. The purpose of this work was to develop a method for application of low frequency currents to the scalp, which delivered the maximum current without significant stimulation of skin or underlying brain. We propose a recessed electrode design which enabled current injection with an acceptable skin sensation to be increased from 100 μA using EEG electrodes, to 1 mA in 16 normal volunteers. The effect of current delivered to the brain was assessed with an anatomically realistic finite element model of the adult head. The modelled peak cerebral current density was 0.3 A/m2, which was 5 to 25-fold less than the threshold for stimulation of the brain estimated from literature review.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Adair RK, Astumian RD, Weaver JC (1998) Detection of weak electric fields by sharks, rays, and skates. Chaos 8(3):576–587 doi: 10.1063/1.166339

    Article  Google Scholar 

  2. Akhtari M, Bryant HC, Mamelak AN, Flynn ER, Heller L, Shih JJ, Mandelkern M, Matlachov A, Ranken DM, Best ED, DiMauro MA, Lee RR, Sutherling WW (2002) Conductivities of three-layer live human skull. Brain Topogr 14(3):151–167 doi: 10.1023/A:1014590923185

    Article  Google Scholar 

  3. Andrews TJ, Halpern SD, Purves D (1997) Correlated size variations in human visual cortex, lateral geniculate nucleus, and optic tract. J Neurosci 17(8):2859–2868

    Google Scholar 

  4. Attwell D (2003) Interaction of low frequency electric fields with the nervous system: the retina as a model system. Radiat Prot Dosimetry 106(4):341–348

    Google Scholar 

  5. Baumann SB, Wozny DR, Kelly SK, Meno FM (1997) The electrical conductivity of human cerebrospinal fluid at body temperature. IEEE Trans Biomed Eng 44(3):220–223 doi: 10.1109/10.554770

    Article  Google Scholar 

  6. Bawin SM, Sheppard AR, Mahoney MD, Abu-Assal M, Adey WR (1986) Comparison between the effects of extracellular direct and sinusoidal currents on excitability in hippocampal slices. Brain Res 362(2):350–354

    Article  Google Scholar 

  7. Bawin SM, Sheppard AR, Mahoney MD, Adey WR (1984) Influences of sinusoidal electric fields on excitability in the rat hippocampal slice. Brain Res 323(2):227–237

    Article  Google Scholar 

  8. Bernhardt J (1979) The direct influence of electromagnetic fields on nerve- and muscle cells of man within the frequency range of 1 Hz to 30 MHz. Radiat Environ Biophys 16(4):309–323 doi: 10.1007/BF01340569

    Article  Google Scholar 

  9. Boone KG (1995) The possible use of applied potential tomography for imaging action potentials in the brain. PhD Thesis, University College London, London

  10. Brown BH, Seagar AD (1987) The Sheffield data collection system. Clin Phys Physiol Meas 8(Suppl A):91–97 doi: 10.1088/0143-0815/8/4A/012

    Article  Google Scholar 

  11. BS5724 (1979) Specification for safety of medical electrical equipment, Part 1. General requirements. British Standards Institution, London ISBN 058010690X

  12. Burger HC, Van Dongen R (1960) Specific electrical resistance of body tissue. Phys Med Biol 5:431–447 doi: 10.1088/0031-9155/5/4/304

    Article  Google Scholar 

  13. Burger HC, Van Milaan JB (1943) Measurements of the specific resistnace of the human body to direct current. Acta Med Scand 114:584–607

    Article  Google Scholar 

  14. Carstensen EL, Buettner A, Genberg VL, Miller MW (1985) Sensitivity of the human eye to power frequency electric fields. IEEE Trans Biomed Eng 32(8):561–565

    Article  Google Scholar 

  15. Cheng KS, Isaacson D, Newell JC, Gisser DG (1989) Electrode models for electric current computed tomography. IEEE Trans Biomed Eng 36(9):918–924 doi: 10.1109/10.35300

    Article  Google Scholar 

  16. Dalziel CF (1972) Electric shock hazard. IEEE Spectr 9(2):41–50

    Article  Google Scholar 

  17. Durand DM (2003) Electric field effects in hyperexcitable neural tissue: a review. Radiat Prot Dosimetry 106(4):325–331

    Google Scholar 

  18. Fabrizi L, Horesh L, McEwan A, Holder DS (2006) A feasibility study for imaging of epileptic seizures by EIT using a realistic FEM of the head. In: Proceedings of VII international conference on biomedical applications of electrical impedance tomography, joint conference of world congress on medical physics and biomedical engineering (WC2006), vol 14(1). IFMBE, Seoul, pp 3733–3736

  19. Fabrizi L, Sparkes M, Horesh L, Perez-Juste Abascal JF, McEwan A, Bayford RH, Elwes R, Binnie CD, Holder DS (2006) Factors limiting the application of electrical impedance tomography for identification of regional conductivity changes using scalp electrodes during epileptic seizures in humans. Physiol Meas 27(5):S163–S174 doi: 10.1088/0967-3334/27/5/S14

    Article  Google Scholar 

  20. Foster KR (2003) Mechanisms of interaction of extremely low frequency electric fields and biological systems. Radiat Prot Dosimetry 106(4):301–310

    Google Scholar 

  21. Freygang WH, Landau WM (1955) Some relations between resistivity and electrical activity in the cerebral cortex of the cat. J Cell Comp Physiol 45:377–392 doi: 10.1002/jcp.1030450305

    Article  Google Scholar 

  22. Gabriel C, Gabriel S, Corthout E (1996) The dielectric properties of biological tissues: I. Literature survey. Phys Med Biol 41(11):2231–2249 doi: 10.1088/0031-9155/41/11/001

    Article  Google Scholar 

  23. Garcia LA, Pagan-Carlo LA, Stone MS, Kerber RE (1998) High perimeter impedance defibrillation electrodes reduce skin burns in transthoracic cardioversion. Am J Cardiol 82(9):1125–1127, A9 doi: 10.1016/S0002-9149(98)00571-2

    Article  Google Scholar 

  24. Ghai RS, Bikson M, Durand DM (2000) Effects of applied electric fields on low-calcium epileptiform activity in the CA1 region of rat hippocampal slices. J Neurophysiol 84(1):274–280

    Google Scholar 

  25. Gilad O, Horesh L, Holder DS (2005) Non invasive imaging of synchronized neuronal activity using low frequency electrical impedance tomography. In: Hozman J, Kneppo P (eds) Proceedings of the 3rd European Medical & Biological Engineering Conference (EMBEC´05), vol 11(1). IFMBE, Prague, pp 179–182

  26. Gilad O, Horesh L, Holder DS (2006) Could synchronized neuronal activity be imaged using magnetic detection electrical impedance tomography (MD-EIT)? In: Proceedings of VII international conference on biomedical applications of electrical impedance tomography, joint conference of world congress on medical physics and biomedical engineering (WC2006), vol 14(1). IFMBE, Seoul, pp 5196

  27. Gisser DG, Isaacson D, Newell JC (1987) Current topics in impedance imaging. Clin Phys Physiol Meas 8(Suppl A):39–46 doi: 10.1088/0143-0815/8/4A/005

    Article  Google Scholar 

  28. Haas HL, Jefferys JG (1984) Low-calcium field burst discharges of CA1 pyramidal neurones in rat hippocampal slices. J Physiol 354:185–201

    Google Scholar 

  29. Hoekema R, Wieneke GH, Leijten FS, van Veelen CW, van Rijen PC, Huiskamp GJ, Ansems J, van Huffelen AC (2003) Measurement of the conductivity of skull, temporarily removed during epilepsy surgery. Brain Topogr 16(1):29–38 doi: 10.1023/A:1025606415858

    Article  Google Scholar 

  30. Holder DS, Rao A, Hanquan Y (1996) Imaging of physiologically evoked responses by electrical impedance tomography with cortical electrodes in the anaesthetized rabbit. Physiol Meas 17(Suppl 4A):A179–A186 doi: 10.1088/0967-3334/17/4A/022

    Article  Google Scholar 

  31. Horesh L, Gilad O, Romsauerova A, McEwan A, Arridge SR, Holder DS (2005) Stroke type differentiation by multi-frequency electrical impedance tomography—a feasibility study. In: Hozman J, Kneppo P (eds) Proceedings of the 3rd European Medical & Biological Engineering Conference (EMBEC´05), vol 11(1). IFMBE, Prague, pp 1252–1256

  32. Horesh L, Romsauerova A, Fabrizi L, McEwan A, Arridge SR, Holder DS (2007) Review of the dielectric properties of human head pathophysiology for multi-frequency electrical impedance tomography (MFEIT). Med Biol Eng Comput (in press)

  33. Horesh L, Romsauerova A, Gilad O, McEwan A, Arridge SR, Holder DS (2007) Review of dielectric properties of the human head for multi-frequency electrical impedance tomography (MFEIT). Med Biol Eng Comput (in press)

  34. Horesh L, Schweiger M, Arridge SR, Holder DS (2006) Novel large-scale 3D electrical impedance tomography modelling of the human head. In: Proceedings of VII international conference on biomedical applications of electrical impedance tomography, joint conference of world congress on medical physics and biomedical engineering (WC2006), vol 14(1). IFMBE, Seoul, 3717–3720

  35. Horesh L, Schweiger M, Bollhöfer M, Douiri A, Holder DS, Arridge SR (2006) Multilevel preconditioning for 3D large-scale soft field medical applications modelling. Int J Inf Syst Sci 2(4):532–556

    MathSciNet  Google Scholar 

  36. Hua P, Woo EJ, Webster JG, Tompkins WJ (1993) Finite element modeling of electrode-skin contact impedance in electrical impedance tomography. IEEE Trans Biomed Eng 40(4):335–343 doi: 10.1109/10.222326

    Article  Google Scholar 

  37. ICNIRP (1998) Guidelines for limiting exposure to time-varying electric, magnetic, and electromagnetic fields (up to 300 GHz). International Commission on Non-Ionizing Radiation Protection. Health Phys 74(4):494–522

    Google Scholar 

  38. IEC60601-1{ed3.0} (2005) Medical electrical equipment—part 1: general requirements for basic safety and essential performance. International Electrotechnical Commission, Geneva

  39. IEEE Std C95.6-2002 (2002) IEEE Standard for safety levels with respect to human exposure to electromagnetic fields, 0–3 kHz. IEEE, New York ISBN 0-7381-3390-6

  40. Jasper HH (1958) Appendix to report to committee on clinical examination in EEG: the ten-twenty electrode system of the International Federation. Electroencephalogr Clin Neurophysiol 10:371–375

    Google Scholar 

  41. Jefferys JG, Deans J, Bikson M, Fox J (2003) Effects of weak electric fields on the activity of neurons and neuronal networks. Radiat Prot Dosimetry 106(4):321–323

    Google Scholar 

  42. Joy ML, Lebedev VP, Gati JS (1999) Imaging of current density and current pathways in rabbit brain during transcranial electrostimulation. IEEE Trans Biomed Eng 46(9):1139–1149 doi: 10.1109/10.784146

    Article  Google Scholar 

  43. Kayyali H, Durand D (1991) Effects of applied currents on epileptiform bursts in vitro. Exp Neurol 113(2):249–254

    Article  Google Scholar 

  44. Kowalski T, Silny J, Buchner H (2002) Current density threshold for the stimulation of neurons in the motor cortex area. Bioelectromagnetics 23(6):421–428 doi: 10.1002/bem.10036

    Article  Google Scholar 

  45. Krasteva VT, Papazov SP (2002) Estimation of current density distribution under electrodes for external defibrillation. Biomed Eng Online 1(1):7 doi: 10.1186/1475-925X-1-7

    Article  Google Scholar 

  46. Krasteva VT, Papazov SP, Daskalov IK (2002) Magnetic stimulation for non-homogeneous biological structures. Biomed Eng Online 1(1):3 doi: 10.1186/1475-925X-1-3

    Article  Google Scholar 

  47. Law SK (1993) Thickness and resistivity variations over the upper surface of the human skull. Brain Topogr 6(2):99–109 doi: 10.1007/BF01191074

    Article  Google Scholar 

  48. Lee BI, Oh SH, Woo EJ, Lee SY, Cho MH, Kwon O, Seo JK, Lee JY, Baek WS (2003) Three-dimensional forward solver and its performance analysis for magnetic resonance electrical impedance tomography (MREIT) using recessed electrodes. Phys Med Biol 48(13):1971–1986

    Article  Google Scholar 

  49. Lindenblatt G, Silny J (2002) Electrical phosphenes: on the influence of conductivity inhomogeneities and small-scale structures of the orbita on the current density threshold of excitation. Med Biol Eng Comput 40(3):354–359 doi: 10.1007/BF02344219

    Article  Google Scholar 

  50. Lionheart WR, Kaipio J, McLeod CN (2001) Generalized optimal current patterns and electrical safety in EIT. Physiol Meas 22(1):85–90 doi: 10.1088/0967-3334/22/1/311

    Article  Google Scholar 

  51. Liston AD (2004) Models and image reconstruction in electrical impedance tomography of human brain function. PhD Thesis, Middlesex University, London

  52. McCreery DB, Agnew WF, Yuen TG, Bullara L (1990) Charge density and charge per phase as cofactors in neural injury induced by electrical stimulation. IEEE Trans Biomed Eng 37(10):996–1001 doi: 10.1109/10.102812

    Article  Google Scholar 

  53. Miranda PC, Hallett M, Basser PJ (2003) The electric field induced in the brain by magnetic stimulation: a 3-D finite-element analysis of the effect of tissue heterogeneity and anisotropy. IEEE Trans Biomed Eng 50(9):1074–1085 doi: 10.1109/TBME.2003.816079

    Article  Google Scholar 

  54. Nitsche MA, Liebetanz D, Antal A, Lang N, Tergau F, Paulus W (2003) Modulation of cortical excitability by weak direct current stimulation–technical, safety and functional aspects. Suppl Clin Neurophysiol 56:255–276

    Google Scholar 

  55. Nitsche MA, Liebetanz D, Lang N, Antal A, Tergau F, Paulus W (2003) Safety criteria for transcranial direct current stimulation (tDCS) in humans. Clin Neurophysiol 114(11):2220–2222 doi: 10.1016/S1388-2457(03)00235-9

    Article  Google Scholar 

  56. Oostendorp TF, Delbeke J, Stegeman DF (2000) The conductivity of the human skull: results of in vivo and in vitro measurements. IEEE Trans Biomed Eng 47(11):1487–1492 doi: 10.1109/TBME.2000.880100

    Article  Google Scholar 

  57. Papazov S, Kostov Z, Daskalov I (2002) Electrical current distribution under transthoracic defibrillation and pacing electrodes. J Med Eng Technol 26(1):22–27 doi: 10.1080/03091900110102454

    Article  Google Scholar 

  58. Paulsen KS, Breckon WR, Pidcock MK (1992) Electrode modelling in electrical impedance tomography. SIAM J Appl Math 52:1012–1022 doi: 10.1137/0152059

    Article  Google Scholar 

  59. Polydorides N, Lionheart WR (2002) A Matlab toolkit for three-dimensional electrical impedance tomography: a contribution to the electrical impedance and diffuse optical reconstruction software project. Meas Sci Technol 13(12):1871–83

    Article  Google Scholar 

  60. Priori A (2003) Brain polarization in humans: a reappraisal of an old tool for prolonged non-invasive modulation of brain excitability. Clin Neurophysiol 114(4):589–595 doi: 10.1016/S1388-2457(02)00437-6

    Article  Google Scholar 

  61. Radiat Prot Dosimetry (2003) Proceedings of the international workshop on weak electric field effects in the body. United Kingdom, 24–25 March 2003. Radiat Prot Dosimetry 106(4):295–400

    Google Scholar 

  62. Ranck JB Jr (1963) Specific impedance of rabbit cerebral cortex. Exp Neurol 7(2):144–152 doi: 10.1016/S0014-4886(63)80005-9

    Article  Google Scholar 

  63. Ranck JB Jr, BeMent SL (1965) The specific impedance of the dorsal columns of cat: an inisotropic medium. Exp Neurol 11(4):451–463 doi: 10.1016/0014-4886(65)90059-2

    Article  Google Scholar 

  64. Rattay F (1998) Analysis of the electrical excitation of CNS neurons. IEEE Trans Biomed Eng 45(6):766–772 doi: 10.1109/10.678611

    Article  Google Scholar 

  65. Rattay F (1999) The basic mechanism for the electrical stimulation of the nervous system. Neuroscience 89(2):335–346 doi: 10.1016/S0306-4522(98)00330-3

    Article  Google Scholar 

  66. Reilly JP (1998) Applied bioelectricity: from electrical stimulation to electropathology. Springer, Heidelberg ISBN 0387984070

    Google Scholar 

  67. Reilly JP (2002) Neuroelectric mechanisms applied to low frequency electric and magnetic field exposure guidelines–part I: sinusoidal waveforms. Health Phys 83(3):341–355

    Article  Google Scholar 

  68. Reilly JP, Diamani AM (2003) Spatial relationships in electrostimulation: application to electromagnetic field standards. IEEE Trans Biomed Eng 50(6):783–785 doi: 10.1109/TBME.2003.812156

    Article  Google Scholar 

  69. Reilly JP, Diamant AM (2002) Neuroelectric mechanisms applied to low frequency electric and magnetic field exposure guidelines–part II: non sinusoidal waveforms. Health Phys 83(3):356–365

    Article  Google Scholar 

  70. Romsauerova A, McEwan A, Holder DS (2006) Identification of a suitable current waveform for acute stroke imaging. Physiol Meas 27(5):S211–S219 doi: 10.1088/0967-3334/27/5/S18

    Article  Google Scholar 

  71. Rush S, Driscoll DA (1968) Current distribution in the brain from surface electrodes. Anesth Analg 47(6):717–723

    Article  Google Scholar 

  72. Saunders RD (2003) Rapporteur report: weak field interactions in the central nervous system. Radiat Prot Dosimetry 106(4):357–361

    MathSciNet  Google Scholar 

  73. Saunders RD, Jefferys JG (2002) Weak electric field interactions in the central nervous system. Health Phys 83(3):366–375

    Article  Google Scholar 

  74. Suesserman MF, Spelman FA, Rubinstein JT (1991) In vitro measurement and characterization of current density profiles produced by non-recessed, simple recessed, and radially varying recessed stimulating electrodes. IEEE Trans Biomed Eng 38(5):401–408 doi: 10.1109/10.81558

    Article  Google Scholar 

  75. Taki M, Suzuki Y, Wake K (2003) Dosimetry considerations in the head and retina for extremely low frequency electric fields. Radiat Prot Dosimetry 106(4):349–356

    Google Scholar 

  76. Tidswell AT, Gibson A, Bayford RH, Holder DS (2001) Three-dimensional electrical impedance tomography of human brain activity. Neuroimage 13(2):283–294 doi: 10.1006/nimg.2000.0698

    Article  Google Scholar 

  77. Tizzard A, Horesh L, Yerworth RJ, Holder DS, Bayford RH (2005) Generating accurate finite element meshes for the forward model of the human head in EIT. Physiol Meas 26(2):S251–S261 doi: 10.1088/0967-3334/26/2/024

    Article  Google Scholar 

  78. Traynelis SF, Dingledine R (1988) Potassium-induced spontaneous electrographic seizures in the rat hippocampal slice. J Neurophysiol 59(1):259–276

    Google Scholar 

  79. Van Harreveld A, Murphy T, Nobel KW (1963) Specific Impedance of rabbit’s cortical tissue. Am J Physiol 205(1):203–207

    Google Scholar 

  80. Weaver JC, Vaughan TE, Adair RK, Astumian RD (1998) Theoretical limits on the threshold for the response of long cells to weak extremely low frequency electric fields due to ionic and molecular flux rectification. Biophys J 75(5):2251–2254

    Article  Google Scholar 

  81. Williamson A, Hoggart B (2005) Pain: a review of three commonly used pain rating scales. J Clin Nurs 14(7):798–804 doi: 10.1111/j.1365-2702.2005.01121.x

    Article  Google Scholar 

  82. Yerworth RJ, Bayford RH, Brown B, Milnes P, Conway M, Holder DS (2003) Electrical impedance tomography spectroscopy (EITS) for human head imaging. Physiol Meas 24(2):477–489 doi: 10.1088/0967-3334/24/2/358

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge Ilan Gilad from the Ben-Gurion University of the Negev, Israel, for manufacturing the recessed electrodes and Solange Akselrod2 for her comments during the preparation of this manuscript. This study was funded by the Epilepsy Research Foundation, UK, the Ministry of Science & Technology, Israel and by grant NIH 1R01EB006597-01 from The National Institutes of Health, US.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. Gilad.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gilad, O., Horesh, L. & Holder, D.S. Design of electrodes and current limits for low frequency electrical impedance tomography of the brain. Med Bio Eng Comput 45, 621–633 (2007). https://doi.org/10.1007/s11517-007-0209-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-007-0209-7

Keywords

Navigation