Skip to main content
Log in

The endotracheal tube biases the estimates of pulmonary recruitment and overdistension

  • Short Communication
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

To assess the impact of the endotracheal tube (ETT) and of different flow waveforms on estimates of alveolar cyclic recruitment (CR) and overdistension (AO). Numerical simulation of the respiratory system plus ETT (inertance L plus a flow-dependent resistance, K 1 and K 2), with the following non-linear equation of motion

$$ P_{{{\text{AW}}}} ({\text{t}}) = {\text{ }}{\left( {\left( {\left. {K_{1} + K_{2} \cdot \left| {\left. {\ifmmode\expandafter\dot\else\expandafter\.\fi{V}({\text{t}})} \right|} \right.} \right) \cdot \ifmmode\expandafter\dot\else\expandafter\.\fi{V}({\text{t}}) + L \cdot \ifmmode\expandafter\ddot\else\expandafter\"\fi{V}({\text{t}})} \right.} \right)} + {\text{Rrs}} \cdot \ifmmode\expandafter\dot\else\expandafter\.\fi{V}({\text{t}}) + {\left( {E_{1} + E_{2} \cdot V({\text{t}})} \right)} \cdot V({\text{t}}) + P_{0} $$

(P AW pressure at the airways opening, V volume), under volume-controlled mechanical ventilation. An index %E 2 = 100·(E 2·V T)/(E 1 + E 2·V T) can be calculated where %E 2 > 30% represents AO and %E 2 < 0% represents CR. Parameters were estimated by the least-squares method, either with the complete equation or supressing L, K 2 or both. %E 2 is always underestimated (down to −152 percent points) with incomplete equations of motion. The estimation of %E 2 may be strongly biased in the presence of an ETT excluded from the estimation model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Abbreviations

ALI:

Acute lung injury

AO:

Alveolar overdistension

CR:

Cyclic recruitment

E 1 :

Linear elastance

E 2.V :

Volume-dependent elastance

%E 2 :

Contribution of the volume-dependent elastance to the total elastance

ETT:

Endotracheal tube

K 1 :

Linear resistance of the ETT

\( K_{2} \left| {\left. {\ifmmode\expandafter\dot\else\expandafter\.\fi{V}({\text{t}})} \right|} \right. \) :

Flow-dependent resistance of the ETT

L :

Inertance

P 0 :

Airways pressure when volume and respective derivatives are zero

P AW :

Pressure at the airways opening

Pel:

Elastic component of the airways pressure

Pel-V:

Elastic pressure–volume relationship

PEEP:

Positive end-expiratory pressure

Pinf:

Mathematical inflection point of the Pel-V curve

Pmcd:

Point of maximal decrease of compliance

Pmci:

Point of maximal increase of compliance

Rrs:

Resistance of the respiratory system

RS:

Respiratory system

VCV:

Volume-controlled ventilation

V T :

Tidal volume

V(t):

Volume

\( \ifmmode\expandafter\dot\else\expandafter\.\fi{V}({\text{t}}) \) :

Flow

\( \ifmmode\expandafter\ddot\else\expandafter\"\fi{V}({\text{t}}) \) :

Time-derivative of the flow

References

  1. Bersten AD (1998) Measurement of overinflation by multiple linear regression analysis in patients with acute lung injury. Eur Respir J 12:526–532

    Article  Google Scholar 

  2. Dries DJ, Marini JJ (2002) Optimized positive end-expiratory pressure—an elusive target. Crit Care Med 30:1159–1160

    Article  Google Scholar 

  3. Edibam C, Rutten AJ, Collins DV, Bersten AD (2003) Effect of inspiratory flow pattern and inspiratory to expiratory ratio on nonlinear elastic behavior in patients with acute lung injury. Am J Respir Crit Care Med 167:702

    Article  Google Scholar 

  4. Fahy BG, Barnas GM, Flowers JL, Nagle SE, Agarwal M (1997) Effects of PEEP on respiratory mechanics are tidal volume and frequency dependent. Respir Physiol 109:53–64

    Article  Google Scholar 

  5. Harris RS, Hess DR, Venegas JG (2000) An objective analysis of the pressure–volume curve in the acute respiratory distress syndrome. Am J Respir Crit Care Med 161:432–439

    Google Scholar 

  6. Jandre FC, Carvalho AR, Pino AV, Giannella-Neto A (2005) Effects of filtering and delays on the estimates of a nonlinear respiratory mechanics model. Respir Physiol Neurobiol 148:309–314

    Article  Google Scholar 

  7. Kano S, Lanteri CJ, Duncan AW, Sly PD (1994) Influence of nonlinearities on estimates of respiratory mechanics using multilinear regression analysis. J Appl Physiol 77:1185–1197

    Google Scholar 

  8. Lanteri CJ, Petak F, Gurrin L, Sly PD (1999) Influence of inertance on respiratory mechanics measurements in mechanically ventilated puppies. Pediatr Pulmonol 28:130–138

    Article  Google Scholar 

  9. Muramatsu K, Yukitake K, Nakamura M, Matsumoto I, Motohiro Y (2001) Monitoring of nonlinear respiratory elastance using a multiple linear regression analysis. Eur Respir J 17:1158–1166

    Article  Google Scholar 

  10. Ranieri VM, Zhang H, Mascia L, Aubin M, Lin CY, Mullen JB, Grasso S, Binnie M, Volgyesi GA, Eng P, Slutsky AS (2000) Pressure–time curve predicts minimally injurious ventilatory strategy in an isolated rat lung model. Anesthesiology 93:1320–1328

    Article  Google Scholar 

  11. Spaan JAE, Cornelissen AJM, Chan C, Dankelman J, Yin FCP (2000) Dynamics of flow, resistance, and intramural vascular volume in canine coronary circulation. Am J Physiol Heart Circ Physiol 278:383–403

    Google Scholar 

  12. Sullivan M, Paliotta J, Saklad M (1976) Endotracheal tube as a factor in measurement of respiratory mechanics. J Appl Physiol 41:590–592

    Google Scholar 

  13. Suter PM, Fairley HB, Isenberg MD (1978) Effect of tidal volume and positive end-expiratory pressure on compliance during mechanical ventilation. Chest 73:158–162

    Article  Google Scholar 

  14. Venegas JG, Harris RS, Simon BA (1998) A comprehensive equation for the pulmonary pressure–volume curve. J Appl Physiol 84:389–395

    Google Scholar 

Download references

Acknowledgments

The authors wish to thank Dr. J. Venegas for his kindness in providing the experimental data for this study. This work was partially supported by grants of CNPq and FAPERJ.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Giannella-Neto.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jandre, F.C., Modesto, F.C., Carvalho, A.R.S. et al. The endotracheal tube biases the estimates of pulmonary recruitment and overdistension. Med Bio Eng Comput 46, 69–73 (2008). https://doi.org/10.1007/s11517-007-0227-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-007-0227-5

Keywords

Navigation