Skip to main content
Log in

A new capnograph based on an electro acoustic sensor

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

End tidal carbon dioxide measurements with an electro acoustic capnograph prototype have been demonstrated. The aim of this study was to verify that it is possible to obtain an adequate capnogram using the prototype and to investigate the influence of ambient temperature and humidity variations. By simultaneous measurements with a reference capnograph, on subjects performing exercise, hypo- and hyperventilation, PETCO2 readings from the reference were compared with the output signal from the prototype. The capnogram from the prototype correlated well with the reference in terms of breath time. The first parts of the expiration and inspiration phases were steeper for the reference than the prototype. The output signal from the prototype correlated well with the reference PETCO2 readings with a correlation coefficient of 0.93 at varied temperature and relative humidity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Campbell FA, McLeod ME, Bissonnette B et al (1994) End-tidal carbon dioxide measurement in infants and children during and after general anaesthesia. Can J Anaesth 41(2):107–110

    Article  Google Scholar 

  2. Cheng EY, Stommel KA (1989) Quantitative evaluation of a combined pulse oximetry and end-tidal CO2 monitor. Biomed Instrum Technol 23(3):216–221

    Google Scholar 

  3. Folke M, Cernerud L, Ekström M et al (2003) Critical review of non-invasive respiratory monitoring in medical care. Med Biol Eng Comput 41:377–383

    Article  Google Scholar 

  4. Folke M, Hök B, Ekström, M et al (2004) End Tidal Carbon Dioxide Measurement Using an Electro Acoustic Sensor. In: Proceedings of IEEE-EMBC, San Francisco, pp 362

  5. Folke M, Gullstrand L, Hök B (2005) A pilot study to estimate the lactate threshold using an electro acoustic sensor. In: Proceedings of the 13th Nordic-Baltic conference on biomedical engineering & medical physics, Umeå pp 249–250

  6. Folke M, Hök B. (2005) Temperature independence of an electro acoustic capnograph. In: Proceedings of the 13th Nordic-Baltic conference on biomedical engineering & medical physics, Umeå, pp 136–137

  7. Gløersen PG, Hök B, Jensen GU et al (2005) Micro-acoustic sensors for CO2 tracking. Sensors + Test, Nuremberg, May 10–12

  8. Granstedt F, Folke M, Bäcklund Y et al (2001) Gas sensor with electroacoustically coupled resonator. Sens Actuators B 78:161–165

    Article  Google Scholar 

  9. Granstedt F, Hök B, Bjurman U et al (2001) New CO2 sensor with high resolution and fast response. In: Proceedings of IEEE-EMBC, Istanbul, pp 3100–3103

  10. Granstedt F, Folke M, Ekström M et al (2005) Modelling of an electroacoustic gas sensor. Sens Actuators B 104:308–311

    Article  Google Scholar 

  11. Hök B, Tallfors M, Sandberg G et al (1998) A new sensor for indoor air quality control. In: Proceedings of Eurosensors XII, Southampton, pp 1072–1075

  12. Hök B, Tallfors M, Sandberg G et al (1999) Acoustic gas sensor with ppm resolution. In: Proceedings of Eurosensors XIII, Den Hague, pp 319–320

  13. Hök B, Blückert A, Dalsrud V et al (2004) Scaling properties and MEMS implementation of acoustic gas sensors. MicroStructure Workshop, MSW, Ystad, pp 101–105

  14. Kavanagh BP, Sandler AN, Turner KE et al (1992) Use of end-tidal PCO2 and Transcutaneous PCO2 as noninvasive measurement of arterial PCO2 in extubated patients recovering from general anerthesia. J Clin Monit 8:226–230

    Article  Google Scholar 

  15. Lenz G, Heipertz W, Epple E (1991) Capnometry for continuous postoperative monitoring of nonintubated, spontaneously breathing patients. J Clin Monit 7:245–248

    Article  Google Scholar 

  16. Lumb AB (2000) Nunn’s applied respiratory physiology. Butterworth-Heinemann, Woburn pp 461–471

  17. van Randeraat J, Setterington RE (1974) Piezoelectric ceramics 2nd edn. Mullard, London pp 159–168

    Google Scholar 

  18. Rayleigh JWS (1898) The theory of sound 2nd edn, vol 2. Dover Books, New York 18ff

  19. Santos LJ, Varon J, Pic-Aluas L et al (1994) Practical uses of end-tidal carbon dioxide monitoring in the emergency department. J Emerg Med 12(5):633–644

    Article  Google Scholar 

  20. Solomon RJ (1981) A reliable, accurate CO2 analyser for medical use. Hewlett Packard J 32(9):2–21

    Google Scholar 

  21. Ward KR, Yealy DM (1998) End-tidal carbon dioxide monitoring in emergency medicine, part 1: basic principles. Acad Emerg Med 5(6):628–636

    Article  Google Scholar 

  22. Ward KR, Yealy DM (1998) End-tidal carbon dioxide monitoring in emergency medicine, part 2: clinical applications. Acad Emerg Med 5(6):637–646

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Folke.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Folke, M., Hök, B. A new capnograph based on an electro acoustic sensor. Med Bio Eng Comput 46, 55–59 (2008). https://doi.org/10.1007/s11517-007-0228-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-007-0228-4

Keywords

Navigation