Skip to main content
Log in

A semi-automated method using interpolation and optimisation for the 3D reconstruction of the spine from bi-planar radiography: a precision and accuracy study

  • Technical Note
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

The 3D reconstruction of the spine in upright posture can be obtained by bi-planar radiographic methods, developed since the 1970s. The principle is to identify 4–25 anatomical landmarks per vertebrae and per images. This identification time is hardly manageable in clinical practice. A semi-automated method is used: 3D standard vertebral models are positioned along with a 3D curve (identified all the way through the vertebral bodies). The silhouettes of the models of C7 and L5 vertebrae are first adjusted and the positions of the other vertebrae are interpolated and optimised. The inter- and intra-operator variabilities and the errors between the semi-automated method and the manual identification of six anatomical landmarks per vertebra are evaluated on 20 pairs of X-ray images of subjects with different spinal deformities. The identification time for the semi-automated method is 5 min. For scolitic subjects, the precision is under 2.2° and the accuracy is under 3.2° for all lateral, sagittal and axial rotations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

References

  1. Aaro S, Dahlborn M (1981) Estimation of vertebral rotation and the spinal and rib cage deformity in scoliosis by computer tomography. Spine 6:460–467

    Article  Google Scholar 

  2. Andre B, Trochu F, Dansereau J (1996) Approach for the smoothing of three-dimensional reconstructions of the human spine using dual Kriging interpolation. Med Biol Eng Comput 34:185–191

    Article  Google Scholar 

  3. Aubin CE, Dansereau J, Parent F, Labelle H, de Guise JA (1997) Morphometric evaluations of personalised 3D reconstructions and geometric models of the human spine. Med Biol Eng Comput 35:611–618

    Article  Google Scholar 

  4. Aubin C E, Dansereau J, Petit Y, Parent F, de Guise JA, Labelle H (1998) Three-dimensional measurement of wedged scoliotic vertebrae and intervertebral disks. Eur Spine J 7:59–65

    Article  Google Scholar 

  5. Aubin CE, Lobeau D, Labelle H, Maquinghen-Godillon AP, Lebanc R, Dansereau J (1999) Planes of maximum deformity in the scoliotic spine. Research into Spinal Deformities 2:45–48

    Google Scholar 

  6. Benameur S, Mignotte M, Labelle H, De Guise JA (2005) A hierarchical statistical modeling approach for the unsupervised 3-D biplanar reconstruction of the scoliotic spine. IEEE Trans Biomed Eng 52:2041–2057

    Article  Google Scholar 

  7. Benameur S, Mignotte M, Parent S, Labelle H, Skalli W, de Guise J (2003) 3D/2D registration and segmentation of scoliotic vertebrae using statistical models. Comput Med Imaging Graph 27:321–337

    Article  Google Scholar 

  8. Berthonnaud E, Chotel F, Dimnet J (2002) The anatomic patterns of the lower limb from three-dimensional radiographic reconstruction of bones (3drrb). ITBM-RBM 23:290–302

    Article  Google Scholar 

  9. Berthonnaud E, Herzberg G, Zhao KD, An KN, Dimnet J (2005) Three-dimensional in vivo displacements of the shoulder complex from biplanar radiography. Surg Radiol Anat 27:214–222

    Article  Google Scholar 

  10. Brown RH, Burstein AH, Nash CL, Schock CC (1976) Spinal analysis using a three-dimensional radiographic technique. J Biomech 9:355–365

    Article  Google Scholar 

  11. Carpineta L, Labelle H (2003) Evidence of three-dimensional variability in scoliotic curves. Clin Orthop Relat Res 412:139–148

    Article  Google Scholar 

  12. Chèze L, Roussouly P, Dimnet J (1992) [Structural analysis of scoliotic spine for surgical or orthopaedic reduction]. Innovation et Technologie en Biologie et Médecine 13:143–156

    Google Scholar 

  13. Dansereau J, Stokes IA (1988) Measurements of the three-dimensional shape of the rib cage. J Biomech 21:893–901

    Article  Google Scholar 

  14. De Smet AA, Tarlton MA, Cook LT, Berridge AS, Asher MA (1983) The top view for analysis of scoliosis progression. Radiology 147:369–372

    Google Scholar 

  15. De Smet AA, Tarlton MA, Cook LT, Fritz SL, Dwyer SJ III (1980) A radiographic method for three-dimensional analysis of spinal configuration. Radiology 137:343–348

    Google Scholar 

  16. Delorme S, Labelle H, Aubin CE, de Guise JA, Rivard CH, Poitras B, Dansereau J (2000) A three-dimensional radiographic comparison of Cotrel-Dubousset and Colorado instrumentations for the correction of idiopathic scoliosis. Spine 25:205–210

    Article  Google Scholar 

  17. Delorme S, Labelle H, Poitras B, Rivard CH, Coillard C, Dansereau J (2000) Pre-, intra-, and postoperative three-dimensional evaluation of adolescent idiopathic scoliosis. J Spinal Disord 13:93–101

    Article  Google Scholar 

  18. Delorme S, Petit Y, de Guise JA, Labelle H, Aubin CE, Dansereau J (2003) Assessment of the 3-d reconstruction and high-resolution geometrical modeling of the human skeletal trunk from 2-D radiographic images. IEEE Trans Biomed Eng 50:989–998

    Article  Google Scholar 

  19. Deschenes S, Godbout B, Pomero V, Skalli W, de Guise JA (2004) Vertebral pose estimation using edge-based pattern matching and stereoradiographic 3D reconstruction of the spine. Int Cong Series 1268:237–242

    Article  Google Scholar 

  20. Dimnet J, Guinguand M (1984) The finite displacements vector’s method: an application to the scoliotic spine. J Biomech 17:397–408

    Article  Google Scholar 

  21. Drerup B (1984) Principles of measurement of vertebral rotation from frontal projections of the pedicles. J Biomech 17:923–935

    Article  Google Scholar 

  22. Drerup B, Hierholzer E (1992) Evaluation of frontal radiographs of scoliotic spines–Part II. Relations between lateral deviation, lateral tilt and axial rotation of vertebrae. J Biomech 25:1443–1450

    Article  Google Scholar 

  23. Drerup B, Hierholzer E (1996) Assessment of scoliotic deformity from back shape asymmetry using an improved mathematical model. Clin Biomech (Bristol, Avon) 11:376–383

    Article  Google Scholar 

  24. Dubousset J (1994) Three-dimensional analysis of the scoliotic deformity. The pediatric spine: principles and practice, Ravan Press, New York, pp 479–496

  25. Dumas R, Le Bras A, Champain N, Savidan M, Mitton D, Kalifa G, Steib JP, de Guise JA, Skalli W (2004) Validation of the relative 3D orientation of vertebrae reconstructed by bi-planar radiography. Med Eng Phys 26:415–422

    Article  Google Scholar 

  26. Dumas R, Steib JP, Mitton D, Lavaste F, Skalli W (2003) Three-dimensional quantitative segmental analysis of scoliosis corrected by the in situ contouring technique. Spine 28:1158–1162

    Article  Google Scholar 

  27. Duong L, Cheriet F, Labelle H (2006) Three-dimensional classification of spinal deformities using fuzzy clustering. Spine 31:923–930

    Article  Google Scholar 

  28. Elbaroudi F, Blanchard B (2006) Procédé d’imagerie informatisé permettant une reconstruction tridimensionnelle à partir d’images radiographiques bidimensionnelles; dispositif de mise en œuvre. Demande de brevet N/REF U370FR

  29. Gangnet N, Dumas R, Pomero V, Mitulescu A, Skalli W, Vital JM (2006) Three-dimensional spinal and pelvic alignment in an asymptomatic population. Spine 31:E507–12

    Article  Google Scholar 

  30. Gangnet N, Pomero V, Dumas R, Skalli W, Vital JM (2003) Variability of the spine and pelvis location with respect to the gravity line: a three-dimensional stereoradiographic study using a force platform. Surg Radiol Anat 25:424–433

    Article  Google Scholar 

  31. Gerard O, Planeels-Rodriguez M, Lelong P, Makram-Ebeid S (2003) Method and system for extracting spine frontal geometrical data including vertebra pedicle locations. Patent US 2002/0061126

  32. Gille O, Champain N, Benchikh-El-Fegoun A, Vital JM, Skalli W (2007) Reliability of 3D reconstruction of the spine of mild scoliotic patients. Spine 32:568–73

    Article  Google Scholar 

  33. Graf H, Hecquet J, Dubousset J (1983) [3-dimensional approach to spinal deformities. Application to the study of the prognosis of pediatric scoliosis]. Rev Chir Orthop Reparatrice Appar Mot 69:407–416

    Google Scholar 

  34. Hartley RI, Sturm P (1997) Triangulation. Comp Vis Image Understand 68:146–157

    Article  Google Scholar 

  35. Hindmarsh J, Larsson J, Mattsson O (1980) Analysis of changes in the scoliotic spine using a three-dimensional radiographic technique. J Biomech 13:279–90

    Article  Google Scholar 

  36. Huysmans T, Moens P, Van Audekercke R (2005) An active shape model for the reconstruction of scoliotic deformities from back shape data. Clin Biomech (Bristol, Avon) 20:813–821

    Article  Google Scholar 

  37. Johnsson R, Axelsson P, Stromqvist B (1997) Posterolateral lumbar fusion using facet joint fixation with biodegradable rods: a pilot study. Eur Spine J 6:144–148

    Article  Google Scholar 

  38. Johnsson R, Axelsson P, Strömqvist B (1996) Mobility provocation of lumbar fusion evaluated by radiostereometric analysis. Acta Orthop Scand 67(Suppl):45–46

    Google Scholar 

  39. Kanayama M, Tadano S, Kaneda K, Ukai T, Abumi K (1996) A mathematical expression of three-dimensional configuration of the scoliotic spine. J Biomech Eng 118:247–252

    Google Scholar 

  40. Kohashi Y, Oga M, Sugioka Y (1996) A new method using top views of the spine to predict the progression of curves in idiopathic scoliosis during growth. Spine 21:212–217

    Article  Google Scholar 

  41. Labelle H, Dansereau J, Bellefleur C, Jequier JC (1995) Variability of geometric measurements from three-dimensional reconstructions of scoliotic spines and rib cages. Eur Spine J 4:88–94

    Article  Google Scholar 

  42. Labelle H, Dansereau J, Bellefleur C, Poitras B, Rivard CH, Stokes IA, de Guise J (1995) Comparison between preoperative and postoperative three-dimensional reconstructions of idiopathic scoliosis with the Cotrel-Dubousset procedure. Spine 20:2487–2492

    Google Scholar 

  43. Mitton D, Landry C, Veron S, Skalli W, Lavaste F, De Guise JA (2000) 3D reconstruction method from biplanar radiography using non-stereocorresponding points and elastic deformable meshes. Med Biol Eng Comput 38:133–139

    Article  Google Scholar 

  44. Mitulescu A, Semaan I, de Guise JA, Leborgne P, Adamsbaum C, Skalli W (2001) Validation of the non-stereo corresponding points stereoradiographic 3D reconstruction technique. Med Biol Eng Comput 39:152–158

    Article  Google Scholar 

  45. Mitulescu A, Skalli W, Mitton D, de Guise JA (2002) Three-dimensional surface rendering reconstruction of scoliotic vertebrae using a non stereo-corresponding points technique. Eur Spine J 11:344–352

    Article  Google Scholar 

  46. Novosad J, Cheriet F, Petit Y, Labelle H (2004) Three-dimensional (3-D) reconstruction of the spine from a single X-ray image and prior vertebra models. IEEE Trans Biomed Eng 51:1628–1639

    Article  Google Scholar 

  47. Papin P, Labelle H, Delorme S, Aubin CE, de Guise JA, Dansereau J (1999) Long-term three-dimensional changes of the spine after posterior spinal instrumentation and fusion in adolescent idiopathic scoliosis. Eur Spine J 8:16–21

    Article  Google Scholar 

  48. Pearcy MJ (1985) Stereo radiography of lumbar spine motion. Acta Orthop Scand Suppl 212:1–45

    Google Scholar 

  49. Perdriolle R (1979) La scoliose: son étude tridimensionnelle. Paris

  50. Perdriolle R, Leborgne P, Dansereau J, de Guise JA, Labelle H (2001) Idiopathic scoliosis in three dimensions: a succession of two-dimensional deformities? Spine 26:2719–2726

    Article  Google Scholar 

  51. Petit Y, Aubin CE, Labelle H (2004) Spinal shape changes resulting from scoliotic spine surgical instrumentation expressed as intervertebral rotations and centers of rotation. J Biomech 37:173–180

    Article  Google Scholar 

  52. Plamondon A, Gagnon M (1990) Evaluation of Euler’s angles with a least squares method for the study of lumbar spine motion. J Biomed Eng 12:143–149

    Article  Google Scholar 

  53. Plamondon A, Gagnon M, Maurais G (1988) Application of a stereoradiographic method for the study of intervertebral motion. Spine 13:1027–1032

    Article  Google Scholar 

  54. Pomero V, Mitton D, Laporte S, de Guise JA, Skalli W (2004) Fast accurate stereoradiographic 3D-reconstruction of the spine using a combined geometric and statistic model. Clin Biomech (Bristol, Avon) 19:240–247

    Article  Google Scholar 

  55. Poncet P, Dansereau J, Labelle H (2001) Geometric torsion in idiopathic scoliosis: three-dimensional analysis and proposal for a new classification. Spine 26:2235–2243

    Article  Google Scholar 

  56. Poncet P, Trochu F, Dansereau J (1999) Curvilinear Three-Dimensional Modeling of Spinal Curves with Dual Kriging. Comput Methods Biomech Biomed Engin 2:295–308

    Article  Google Scholar 

  57. Russell GG, Raso VJ, Hill D, McIvor J (1990) A comparison of four computerized methods for measuring vertebral rotation. Spine 15:24–27

    Article  Google Scholar 

  58. Skalli W, Lavaste F, Descrimes JL (1995) Quantification of three-dimensional vertebral rotations in scoliosis: what are the true values? Spine 20:546–553

    Article  Google Scholar 

  59. Skalli W, Zeller RD, Miladi L, Bourcereau G, Savidan M, Lavaste F, Dubousset J (2006) Importance of pelvic compensation in posture and motion after posterior spinal fusion using CD instrumentation for idiopathic scoliosis. Spine 31:E359–E366

    Article  Google Scholar 

  60. Steib JP, Dumas R, Mitton D, Skalli W (2004) Surgical correction of scoliosis by in situ contouring: a detorsion analysis. Spine 29:193–199

    Article  Google Scholar 

  61. Stokes IA (1985) Biplanar radiography for measurement of spinal shape and motion. Automedica 5:37–49

    Google Scholar 

  62. Stokes IA (1994) Three-dimensional terminology of spinal deformity. A report presented to the Scoliosis Research Society by the Scoliosis Research Society Working Group on 3-D terminology of spinal deformity. Spine 19:236–48

    Article  Google Scholar 

  63. Stokes IA, Bigalow LC, Moreland MS (1987) Three-dimensional spinal curvature in idiopathic scoliosis. J Orthop Res 5:102–113

    Article  Google Scholar 

  64. Tredwell SJ, Sawatzky BJ, Hughes BL (1999) Rotations of a helix as a model for correction of the scoliotic spine. Spine 24:1223–1227

    Article  Google Scholar 

  65. Trochu F (1993) A contouring program based on dual kriging interpolation. Eng Comput 9:160–177

    Article  Google Scholar 

  66. Villemure I, Aubin CE, Grimard G, Dansereau J, Labelle H (2001) Progression of vertebral and spinal three-dimensional deformities in adolescent idiopathic scoliosis: a longitudinal study. Spine 26:2244–2250

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge G. Duval-Beaupère, J. Legaye, M. De Seze, and B. Lavignolle for their constructive advices.

The authors would also like to thank O. Hauger, N. Grenier, and F. Diard, form the Service de Radiologie et Imagerie Médicale, Os et Articulations at Hôpital Pellegrin (Centre Hospitalier Universitaire, Bordeaux) and C. Vallée from the Service de Radiologie et Imagerie Médicale at Hôpital Raymond Poincaré (Assistance Publique - Hôpitaux de Paris, Garches).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raphaël Dumas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dumas, R., Blanchard, B., Carlier, R. et al. A semi-automated method using interpolation and optimisation for the 3D reconstruction of the spine from bi-planar radiography: a precision and accuracy study. Med Bio Eng Comput 46, 85–92 (2008). https://doi.org/10.1007/s11517-007-0253-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-007-0253-3

Keywords

Navigation