Skip to main content

Advertisement

Log in

Parametric subject-specific model for in vivo 3D reconstruction using bi-planar X-rays: application to the upper femoral extremity

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

Although feasibility of accurate 3D reconstruction of the proximal epiphysis of the femur from biplanar X-rays (frontal and lateral) has been assessed, in vivo application is limited due to bone superposition. The aim of this study was to propose a specific algorithm to get accurate and reproducible, low dose in vivo 3D reconstruction. To achieve this goal, a parametric subject-specific model was introduced as a priori knowledge. This geometric model was based on a database based on proximal epiphysis of 60 femurs. The accuracy was estimated using comparisons to CT scans on 13 cadaveric femurs, then in vivo intra- and inter- observer reproducibility was assessed using a set of 23 femurs. The mean for the relative difference was 0.2 mm for the in vitro 3D accuracy. The mean error was 1.0 mm with maximum value of 5.1 mm in ideal conditions (in vitro). The confidence interval for the inter-observer reproducibility was within ±2.2 mm. This method gave us a reproducible tool in order to get in vivo 3D reconstructions of the femur proximal epiphysis from biplanar X-rays.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Mahfouz MR et al (2003) A robust method for registration of three-dimensional knee implant models to two-dimensional fluoroscopy images. IEEE Trans Med Imaging 22(12):1561–1574

    Article  Google Scholar 

  2. Sato T, Koga Y, Omori G. (2004) Three-dimensional lower extremity alignment assessment system: application to evaluation of component position after total knee arthroplasty. J Arthroplasty 19(5):620–628

    Article  Google Scholar 

  3. Hagio K et al (2004) A novel system of four-dimensional motion analysis after total hip arthroplasty. J Orthop Res 22(3):665–670

    Article  Google Scholar 

  4. Otake Y et al (2005) Four-dimensional model of the lower extremity after total hip arthroplasty. J Biomech 38(12):2397–2405

    Article  Google Scholar 

  5. Bousson V et al (2006) Volumetric quantitative computed tomography of the proximal femur: relationships linking geometric and densitometric variables to bone strength. Role for compact bone. Osteoporos Int 17(6):855–864

    Article  Google Scholar 

  6. Van Sint Jan S et al (2006) Low-dose computed tomography: a solution for in vivo medical imaging and accurate patient-specific 3D bone modeling? Clin Biomech (Bristol, Avon) 21(9):992–998

    Article  Google Scholar 

  7. Gautsch TL, Johnson EE, Seeger LL (1994) True three dimensional stereographic display of 3D reconstructed CT scans of the pelvis and acetabulum. Clin Orthop Relat Res 305:138–151

    Article  Google Scholar 

  8. Mortele KJ, McTavish J, Ros PR (2002) Current techniques of computed tomography. Helical CT, multidetector CT, and 3D reconstruction. Clin Liver Dis 6(1):29–52

    Article  Google Scholar 

  9. Kalifa G et al (1998) Evaluation of a new low-dose digital x-ray device: first dosimetric and clinical results in children. Pediatr Radiol 28(7):557–561

    Article  Google Scholar 

  10. Dubousset J et al (2005) A new 2D and 3D imaging approach to musculoskeletal physiology and pathology with low-dose radiation and the standing position: the EOS system. Bull Acad Natl Med 189(2):287–297 (discussion 297–300)

    Google Scholar 

  11. Fleute M, Lavallee S, Julliard R (1999) Incorporating a statistically based shape model into a system for computer-assisted anterior cruciate ligament surgery. Med Image Anal 3(3):209–222

    Article  Google Scholar 

  12. Laporte S et al (2003) A biplanar reconstruction method based on 2D and 3D contours: application to the distal femur. Comput Methods Biomech Biomed Eng 6(1):1–6

    Article  MathSciNet  Google Scholar 

  13. Pomero V et al (2004) Fast accurate stereoradiographic 3D-reconstruction of the spine using a combined geometric and statistic model. Clin Biomech (Bristol, Avon) 19(3):240–247

    Article  Google Scholar 

  14. Benameur S et al (2003) 3D/2D registration and segmentation of scoliotic vertebrae using statistical models. Comput Med Imaging Graph 27(5):321–337

    Article  Google Scholar 

  15. Benameur S et al (2002) 3D biplanar statistical reconstruction of scoliotic vertebrae. Stud Health Technol Inform 91:281–285

    Google Scholar 

  16. Mitton D et al (2006) 3D reconstruction of the pelvis from bi-planar radiography. Comput Methods Biomech Biomed Eng 9(1):1–5

    Article  MathSciNet  Google Scholar 

  17. Le Bras A et al (2004) 3D reconstruction of the proximal femur with low-dose digital stereoradiography. Comput Aided Surg 9(3):51–57

    Article  Google Scholar 

  18. Pomero V et al. (2003) Procede d’imagerie radiographique pour la reconstruction tridimensionnelle, dispositif et programme d’ordinateur pour mettre en œuvre ce procede Radiographic imaging method for three-dimensional reconstruction, device and computer software for carrying out said method

  19. Mitton D et al (2000) 3D reconstruction method from biplanar radiography using non-stereocorresponding points and elastic deformable meshes. Med Biol Eng Comput 38(2):133–139

    Article  Google Scholar 

  20. Mitulescu A et al (2001) Validation of the non-stereo corresponding points stereoradiographic 3D reconstruction technique. Med Biol Eng Comput 39(2):152–158

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. Baudoin or D. Mitton.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baudoin, A., Skalli, W., de Guise, J.A. et al. Parametric subject-specific model for in vivo 3D reconstruction using bi-planar X-rays: application to the upper femoral extremity. Med Biol Eng Comput 46, 799–805 (2008). https://doi.org/10.1007/s11517-008-0353-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-008-0353-8

Keywords

Navigation