Skip to main content

Advertisement

Log in

Recent technological advancements related to articular cartilage regeneration

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

Some treatments for full thickness defects of the articular cartilage, such as the transplantation of cultured chondrocytes have already been performed. However, in order to overcome osteoarthritis, we must further study the partial thickness defects of articular cartilage. It is much more difficult to repair a partial thickness defect because few repair cells can address such injured sites. We herein show that bioengineered and layered chondrocyte sheets using temperature-responsive culture dishes may be a potentially useful treatment for the repair of partial thickness defects. We also show that a chondrocyte-plate using a rotational culture system without the use of a scaffold may also be useful as a core cartilage of an articular cartilageous defect. We evaluated the properties of these sheets and plates using histological findings, scanning electrical microscopy, and photoacoustic measurement methods, which we developed to evaluate the biomechanical properties of tissue-engineered cartilage. In conclusion, the layered chondrocyte sheets and chondrocyte-plates were able to maintain the cartilageous phenotype, thus suggesting that they could be a new and potentially effective therapeutic product when attached to the sites of cartilage defects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. O’Driscoll SW, Salter RB (1986) The repair of major osteochondral defects in joint surfaces by neochondrogenesis with autogenous osteoperiosteal grafts stimulated by continuous passive motion. An experimental investigation in the rabbit. Clin Orthop Relat Res 208:131–140

    Google Scholar 

  2. Matsusue Y, Yamamuro T, Hama H (1993) Arthroscopic multiple osteochondral transplantation to the chondral defect in the knee associated with anterior cruciate ligament disruption. Arthroscopy 9:318–321. doi:10.1016/S0749-8063(05)80428-1

    Article  Google Scholar 

  3. Brittberg M, Lindahl A, Nilsson A, Ohlsson C, Isaksson O, Peterson L (1994) Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation. N Engl J Med 331:889–895. doi:10.1056/NEJM199410063311401

    Article  Google Scholar 

  4. Ochi M, Uchio Y, Kawasaki K, Wakitani S, Iwasa J (2002) Transplantation of cartilage-like tissue made by tissue engineering in the treatment of cartilage defects of the knee. J Bone Joint Surg Br 84:571–578. doi:10.1302/0301-620X.84B4.11947

    Article  Google Scholar 

  5. Wakitani S, Imoto K, Yamamoto T, Saito M, Murata N, Yoneda M (2002) Human autologous culture expanded bone marrow mesenchymal cell transplantation for repair of cartilage defects in osteoarthritic knees. Osteoarthr Cartil 10:199–206. doi:10.1053/joca.2001.0504

    Article  Google Scholar 

  6. Sato M, Asazuma T, Ishihara M, Kikuchi M, Masuoka K, Ichimura S et al (2003) An atelocollagen honeycomb-shaped scaffold with a membrane seal (ACHMS-scaffold) for the culture of annulus fibrosus cells from an intervertebral disc. J Biomed Mater Res A 64:248–256. doi:10.1002/jbm.a.10287

    Article  Google Scholar 

  7. Sato M, Asazuma T, Ishihara M, Ishihara M, Kikuchi T, Kikuchi M et al (2003) An experimental study of the regeneration of the intervertebral disc with an allograft of cultured annulus fibrosus cells using a tissueengineering method. Spine 28:548–553. doi:10.1097/00007632-200303150-00007

    Article  Google Scholar 

  8. Sato M, Asazuma T, Ishihara M, Kikuchi T, Masuoka K, Ichimura S et al (2003) An atelocollagen honeycomb-shaped scaffold with a membrane seal (ACHMS-scaffold) for the culture of annulus fibrosus cells from an intervertebral disc. J Biomed Mater Res A 64:249–256

    Google Scholar 

  9. Sato M, Ishihara M, Ishihara M, Kaneshiro N, Mitani G, Nagai T et al (2007) Effects of growth factors on heparin-carrying polystyrene-coated atelocollagen scaffold for articular cartilage tissue engineering. J Biomed Mater Res B Appl Biomater 83:181–188. doi:10.1002/jbm.b.30782

    Google Scholar 

  10. Sato M, Asazuma T, Ishihara M, Kikuchi T, Masuoka K, Ishihara M et al (2003) Tissue engineering of the intervertebral disc with an allograft of cultured annulus fibrosus cells using atelocollagen honeycomb-shaped scaffold having a membrane sealing (ACHMS-scaffold). Med Biol Eng Comput 41:365–371. Incorporating Cellular Engineering. doi:10.1007/BF02348444

  11. Masuoka K, Asazuma T, Ishihara M, Sato M, Hattori H, Ishihara M et al (2005) Tissue engineering of articular cartilage using an allograft of cultured chondrocytes in a membrane-sealed atelocollagen honeycomb-shaped scaffold (ACHMS-scaffold). J Biomed Mater Res 75B:177–184. doi:10.1002/jbm.b.30284

    Article  Google Scholar 

  12. Hattori H, Sato M, Masuoka K, Ishihara M, Kikuchi T, Matsui T et al (2004) Osteogenic potential of human adipose tissue-derived stromal cells as an alternative stem cell source. Cells Tissues Organs 178:2–12. doi:10.1159/000081088

    Article  Google Scholar 

  13. Ishihara M, Sato M, Sato S, Kikuchi T, Mochida J, Kikuchi M (2005) Usefulness of photoacoustic measurements for evaluation of biomechanical properties of tissue-engineered cartilage. Tissue Eng 11:1234–1243. doi:10.1089/ten.2005.11.1234

    Article  Google Scholar 

  14. Hattori H, Masuoka K, Sato M, Ishihara M, Asazuma T, Takase B et al (2006) Bone formation using human adipose tissue-derived stromal cells and a biodegradable scaffold. J Biomed Mater Res B Appl Biomater 76:230–239. doi:10.1002/jbm.b.30357

    Google Scholar 

  15. Masuoka K, Asazuma T, Hattori H, Yoshihara Y, Sato M, Matsumura K et al (2006) Tissue engineering of articular cartilage with autologous cultured adipose tissue-derived stromal cells using atelocollagen honeycomb-shaped scaffold with a membrane sealing in rabbits. J Biomed Mater Res B Appl Biomater 79:25–34. doi:10.1002/jbm.b.30507

    Google Scholar 

  16. Kaneshiro N, Sato M, Ishihara M, Mitani G, Sakai H, Mochida J (2006) Bioengineered chondrocyte sheets may be potentially useful for the treatment of partial thickness defects of articular cartilage. Biochem Biophys Res Commun 349:723–731. doi:10.1016/j.bbrc.2006.08.096

    Article  Google Scholar 

  17. Furukawa K, Suenaga H, Toita K, Numata A, Tanaka J, Ushida T et al (2003) Rapid and large-scale formation of chondrocyte aggregates by rotational culture. Cell Transplant 12:475–479

    Google Scholar 

  18. Ishihara M, Sato M, Kaneshiro N, Mitani G, Sato S, Mochida J et al (2006) Development of a diagnostic system for osteoarthritis using a photoacoustic measurement method. Lasers Surg Med 38:249–255. doi:10.1002/lsm.20285

    Article  Google Scholar 

  19. Shimizu T, Yamato M, Kikuchi A, Okano T (2001) Two-dimensional manipulation of cardiac myocyte sheets utilizing temperature-responsive culture dishes augments the pulsatile amplitude. Tissue Eng 7:141–151. doi:10.1089/107632701300062732

    Article  Google Scholar 

  20. Shimizu T, Yamato M, Isoi Y, Akutsu T, Setomaru T, Abe K et al (2002) Fabrication of pulsatile cardiac tissue grafts using a novel 3-dimensional cell sheet manipulation technique and temperature-responsive cell culture surfaces. Circ Res 90:40–48. doi:10.1161/hh0302.105722

    Article  Google Scholar 

  21. Hirose M, Kwon OH, Yamato M, Kikuchi A, Okano T (2000) Creation of designed shape cell sheets that are noninvasively harvested and moved onto another surface. Biomacromolecules 1:377–381. doi:10.1021/bm0002961

    Article  Google Scholar 

  22. Nishida K, Yamato M, Hayashida Y, Watanabe K, Yamamoto K, Adachi E et al (2004) Corneal reconstruction with tissue-engineered cell sheets composed of autologous oral mucosal epithelium. N Engl J Med 351:1187–1196. doi:10.1056/NEJMoa040455

    Article  Google Scholar 

  23. Harimoto M, Yamato M, Hirose M, Takahashi C, Isoi Y, Kikuchi A et al (2002) Novel approach for achieving double-layered cell sheets co-culture: overlaying endothelial cell sheets onto monolayer hepatocytes utilizing temperature-responsive culture dishes. J Biomed Mater Res 62:464–470. doi:10.1002/jbm.10228

    Article  Google Scholar 

  24. Kushida A, Yamato M, Konno C, Kikuchi A, Sakurai Y, Okano T (2000) Temperature-responsive culture dishes allow nonenzymatic harvest of differentiated Madin–Darby canine kidney (MDCK) cell sheets. J Biomed Mater Res 51:216–223 (doi :10.1002/(SICI)1097-4636(200008)51:2<216::AID-JBM10>3.0.CO;2-K)

    Article  Google Scholar 

  25. Okano T, Yamada N, Okuhara M, Sakai H, Sakurai Y (1995) Mechanism of cell detachment from temperature-modulated, hydrophilic–hydrophobic polymer surfaces. Biomaterials 16:297–303. doi:10.1016/0142-9612(95)93257-E

    Article  Google Scholar 

  26. Kikuchi A, Okuhara M, Karikusa F, Sakurai Y, Okano T (1998) Two-dimensional manipulation of confluently cultured vascular endothelial cells using temperature-responsive poly (N-isopropylacrylamide)-grafted surfaces. J Biomater Sci Polym Ed 9:1331–1348. doi:10.1163/156856298X00424

    Article  Google Scholar 

  27. Okano T, Yamada N, Sakai H, Sakurai Y (1993) A novel recovery system for cultured cells using plasma-treated polystyrene dishes grafted with poly(N-isopropylacrylamide). J Biomed Mater Res 27:1243–1251. doi:10.1002/jbm.820271005

    Article  Google Scholar 

  28. Mainil-Varlet P, Rieser F, Grogan S, Mueller W, Saager C, Jakob RP (2006) Scaffold-free articular cartilage repair using a tissue-engineered cartilage-like implant: an animal study. Osteoarthr Cartil 9:S6. doi:10.1053/joca.2001.0438

    Article  Google Scholar 

  29. Marlovits S, Tichy B, Truppe M, Gruber D, Vecsei V (2003) Chondrogenesis of aged human articular cartilage in a scaffold-free bioreactor. Tissue Eng 9:1215–1226. doi:10.1089/10763270360728125

    Article  Google Scholar 

  30. Grogan SP, Rieser F, Winkelmann V, Berardi S, Mainil-Varlet P (2003) A static, closed and scaffold-free bioreactor system that permits chondrogenesis in vivo. Osteoarthr Cartil 11:403–411. doi:10.1016/S1063-4584(03)00053-0

    Article  Google Scholar 

  31. Van Cleynenbreugel T, Schrooten J, Van Oosterwyck H, Vander Sloten J (2006) Micro-CT-based screening of biomechanical and structural properties of bone tissue engineering scaffolds. Med Biol Eng Comput 44:517–525. doi:10.1007/s11517-006-0071-z

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Takeda Science Foundation, High-Tech Research Center Project 2004 for Private Universities, and a Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology, the New Energy and Industrial Technology Development Organization, and Japan Foundation for Aging and Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masato Sato.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sato, M., Ishihara, M., Furukawa, K. et al. Recent technological advancements related to articular cartilage regeneration. Med Biol Eng Comput 46, 735–743 (2008). https://doi.org/10.1007/s11517-008-0360-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-008-0360-9

Keywords

Navigation