Skip to main content
Log in

Patient-specific computational fluid dynamic simulation of a bilateral bidirectional Glenn connection

  • Special Issue - Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

Computational fluid dynamics (CFD) have been used to investigate the hemodynamic performance in cavopulmonary anastomosis and resulted in improved operative design. In this study, CFD simulations were performed in a patient-specific bilateral bidirectional Glenn (BBDG) connection model and the power losses as well as flow features at different levels of predetermined pulmonary flow splits were calculated and compared. The control volume power loss varied between 0.64 and 1.02 mW when the flow ratio of left pulmonary artery/right pulmonary artery changed from 80:20 to 20:80. The flow patterns within the connection area and the static pressures in the four vessels differed from each other as the pulmonary flow split changed. Power loss and flow patterns of this BBDG connection were influenced by the pulmonary flow split.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Amodeo A, Di Donato RM (2007) The unifocal bilateral bidirectional cavopulmonary anastomosis. Ann Thorac Surg 84:2134–2135. doi:10.1016/j.athoracsur.2007.04.071

    Article  Google Scholar 

  2. Bove EL, de Leval MR, Migliavacca F, Guadagni G, Dubini G (2003) Computational fluid dynamics in the evaluation of hemodynamic performance of cavopulmonary connections after the Norwood procedure for hypoplastic left heart syndrome. J Thorac Cardiovasc Surg 126:1040–1047. doi:10.1016/S0022-5223(03)00698-6

    Article  Google Scholar 

  3. Bridges ND, Jonas RA, Mayer JE, Flanagan MF, Keane JF, Castaneda AR (1990) Bidirectional cavopulmonary anastomosis as interim palliation for high-risk Fontan candidates. Early results. Circulation 82(5(Suppl)):IV170–IV176

    Google Scholar 

  4. Campbell M, Deuchar DC (1954) The left-sided superior vena cava. Br Heart J 16:423–439. doi:10.1136/hrt.16.4.423

    Article  Google Scholar 

  5. Cilliers A, Gewillig M (2002) Fontan procedure for univentricular hearts: Have changes in design improved outcome? Cardiovasc J S Afr 13:111–116

    Google Scholar 

  6. de Leval MR, Ritter DG, McGoon DC, Danielson GK (1975) Anomalous systemic venous connection. Surgical considerations. Mayo Clin Proc 50:599–610

    Google Scholar 

  7. de Leval MR, Kilner P, Gewillig M, Bull C (1988) Total cavopulmonary connection: a logical alternative to atriopulmonary connection for complex Fontan operations. J Thorac Cardiovasc Surg 96:682–695

    Google Scholar 

  8. de Zélicourt DA, Pekkan K, Paks J, Kanter K, Fogel M, Yoganathan AP (2006) Flow study of an extracardiac connection with persistent left superior vena cava. J Thorac Cardiovasc Surg 131:785–791. doi:10.1016/j.jtcvs.2005.11.031

    Article  Google Scholar 

  9. Hess J (2001) Long-term problems after cavopulmonary anastomosis: diagnosis and management. Thorac Cardiovasc Surg 49:98–100. doi:10.1055/s-2001-11698

    Article  Google Scholar 

  10. Jacobs ML, Pourmoghadam KK (2003) The hemi-Fontan operation. Semin Thorac Cardiovasc Surg Pediatr Card Surg Annu 6:90–97. doi:10.1053/pcsu.2003.50007

    Article  Google Scholar 

  11. Khunatorn Y, Mahalingam S, DeGroff CG, Shandas R (2002) Influence of connection geometry and SVC-IVC flow rate ratio on flow structures within the total cavopulmonary connection: a numerical study. J Biomech Eng 124:364–377. doi:10.1115/1.1487880

    Article  Google Scholar 

  12. Liu Y, Pekkan K, Jones SC, Yoganathan AP (2004) The effects of different mesh generation methods on fluid dynamic analysis and power loss in total cavopulmonary connection. J Biomech Eng 126:594–603. doi:10.1115/1.1800553

    Article  Google Scholar 

  13. Marino BS (2002) Outcomes after the Fontan procedure. Curr Opin Pediatr 14:620–626. doi:10.1097/00008480-200210000-00010

    Article  Google Scholar 

  14. Marsden AL, Vignon-Clementel IE, Chan FP, Feinstein JA, Taylor CA (2007) Effects of exercise and respiration on hemodynamic efficiency in CFD simulations of the total cavopulmonary connection. Ann Biomed Eng 35:250–263. doi:10.1007/s10439-006-9224-3

    Article  Google Scholar 

  15. Mastalir ET, Kalil RA, Horowitz ES, Wender O, Sant’Anna JR, Prates PR et al (2002) Late clinical outcomes of the Fontan operation in patients with tricuspid atresia. Arq Bras Cardiol 79:56–60. doi:10.1590/S0066-782X2002001000006

    Article  Google Scholar 

  16. Mendelsohn AM, Bove EL, Lupinetti FM, Crowley DC, Lloyd TR, Beekman RHIII (1994) Central pulmonary artery growth patterns after the bidirectional Glenn procedure. J Thorac Cardiovasc Surg 107:1284–1290

    Google Scholar 

  17. Migliavacca F, de Leval MR, Dubini G, Pietrabissa R, Fumero R (1999) Computational fluid dynamic simulations of cavopulmonary connections with an extracardiac lateral conduit. Med Eng Phys 21:187–193. doi:10.1016/S1350-4533(99)00042-9

    Article  Google Scholar 

  18. Migliavacca F, Dubini G, Bove EL, de Leval MR (2003) Computational fluid dynamics simulations in realistic 3-D geometries of the total cavopulmonary anastomosis: the influence of the inferior caval anastomosis. J Biomech Eng 125:805–813. doi:10.1115/1.1632523

    Article  Google Scholar 

  19. Pekkan K, de Zélicourt D, Ge L, Sotiropoulos F, Frakes D, Fogel MA et al (2005) Physics-driven CFD modeling of complex anatomical cardiovascular flows-a TCPC case study. Ann Biomed Eng 33:284–300. doi:10.1007/s10439-005-1731-0

    Article  Google Scholar 

  20. Pittaccio S, Migliavacca F, Dubini G, Koçyildirim E, de Leval MR (2005) On the use of computational models for the quantitative assessment of surgery in congenital heart disease. Anadolu Kardiyol Derg 5:202–209

    Google Scholar 

  21. van den Bosch AE, Roos-Hesselink JW, Van Domburg R, Bogers AJ, Simoons ML, Meijboom FJ (2004) Long-term outcome and quality of life in adult patients after the Fontan operation. Am J Cardiol 93:1141–1145. doi:10.1016/j.amjcard.2004.01.041

    Article  Google Scholar 

  22. Wang C, Pekkan K, de Zélicourt D, Horner M, Parihar A, Kulkarni A et al (2007) Progress in the CFD modeling of flow instabilities in anatomical total cavopulmonary connections. Ann Biomed Eng 35:1840–1856. doi:10.1007/s10439-007-9356-0

    Article  Google Scholar 

  23. Whitehead KK, Pekkan K, Kitajima HD, Paridon SM, Yoganathan AP, Fogel MA (2007) Nonlinear power loss during exercise in single-ventricle patients after the Fontan: insights from computational fluid dynamics. Circulation 116(11(Suppl)):I165–I171. doi:10.1161/CIRCULATIONAHA.106.680827

    Google Scholar 

Download references

Acknowledgments

This work was supported by the National Nature Science Foundation of China under grant number 30672087 and the Science and Technology Committee of Shanghai Municipality under grant number 064307056.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinfen Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, Q., Wan, D., Liu, J. et al. Patient-specific computational fluid dynamic simulation of a bilateral bidirectional Glenn connection. Med Biol Eng Comput 46, 1153–1159 (2008). https://doi.org/10.1007/s11517-008-0376-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-008-0376-1

Keywords

Navigation