Skip to main content

Advertisement

Log in

A 3D kinematic estimation of knee prosthesis using X-ray projection images: clinical assessment of the improved algorithm for fluoroscopy images

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

In this paper, we propose three ideas to improve a kinematic estimation algorithm for total knee arthroplasty. The first is a two-step estimation algorithm that improves estimation accuracy by excluding certain assumptions needed for the pattern matching algorithm reported by Banks and Hodge. The second is incorporating a 3D geometric articulation model into the algorithm to improve estimation accuracy substantially for the depth translation, and to introduce contact points’ trajectories between the articular surfaces. The third is an algorithm to process estimation even when the silhouettes of two components overlap. To assess our algorithm’s potential for clinical application, we carried out two experiments. First, we used a robot to position the prosthesis. Estimation accuracy was checked by comparing input data to the robot with the estimates from X-ray photographs. Incorporating our articulation model remarkably reduced the error in the depth translation. Next, we performed a clinical assessment by applying the algorithm and articulation model to fluoroscopy images of a patient who had recently had TKA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Asano T, Akagi M, Tanaka K et al (2001) In vivo three-dimensional knee kinematics using a biplanar image-matching technique. Clin Orth Rel Res 388:157–166. doi:10.1097/00003086-200107000-00023

    Article  Google Scholar 

  2. Banks SA (1992) Model based 3D kinematic estimation from 2D perspective silhouettes: application with total knee prostheses. Doctorial thesis of Massachusetts Institute of Technology, Cambridge, 5

  3. Banks SA, Hodge WA (1996) Accurate measurement of three-dimensional knee replacement kinematics using single-plane fluoroscopy. IEEE Trans Biomed Eng 43:638–649. doi:10.1109/10.495283

    Article  Google Scholar 

  4. Eckman K, Hafez MA, Jaramaz B et al (2006) Accuracy of pelvic flexion measurements from lateral radiographs. Clin Ortho Rel Res 451:154–160. doi:10.1097/01.blo.0000238809.72164.54

    Article  Google Scholar 

  5. Fregly BJ, Sawyer WG, Harman MK et al (2005) Computational wear prediction of a total knee replacement from in vivo kinematics. J Biomech 38:305–314. doi:10.1016/j.jbiomech.2004.02.013

    Article  Google Scholar 

  6. Fukuoka Y, Hoshino A, Ishida A (1999) A simple radiographic measurement method for polyethylene wear in total knee arthroplasty. IEEE Trans Reha Eng 1:228–233. doi:10.1109/86.769413

    Article  Google Scholar 

  7. Haneishi H, Yagihashi Y, YMiyake Y (1995) A new method for distortion correction of electronic endoscope images. IEEE Trans Med Imag 14:548–555

    Article  Google Scholar 

  8. Hirokawa S, Ariyoshi S, Takahashi K et al (2003) Kinematic measurement of knee prosthesis from single-plane projection images. JSME Int J Bioeng Ser C 46:1368–1376

    Article  Google Scholar 

  9. Hirokawa S, Ariyoshi S, Hossain MA (2005) A 3D kinematic measurement of knee prosthesis using x-ray projection images: countermeasure to the overlap between the tibial and femoral silhouettes. JSME Int J of Bioeng Ser C 48:570–576. doi:10.1299/jsmec.48.570

    Article  Google Scholar 

  10. Hoff WA, Komistek RD, Dennis DA et al (1998) Three-dimensional determination of femoral–tibial contact positions under in vivo conditions using fluoroscopy. Clin Biomech 13:455–472. doi:10.1016/S0268-0033(98)00009-6

    Article  Google Scholar 

  11. Kaptein BL, Valstar ER, Stoel BC et al (2003) A new model-based RSA method validated using CAD models and models from reversed engineering. J Biomech 36:873–882. doi:10.1016/S0021-9290(03)00002-2

    Article  Google Scholar 

  12. Mahfouz MR, Hoff WA, Komistek RD et al (2002) Verification of three-dimensional joint kinematics determined using fluoroscopy: an error analysis. In: Proceedings of the 48th ORS, Dallas, TX

  13. Mahfouz MR, Hoff WA, Komistek RD et al (2003) A robust method for registration of three-dimensional knee implant models to two-dimensional fluoroscopy images. IEEE Trans Med Imag 22:1561–1574. doi:10.1109/TMI.2003.820027

    Article  Google Scholar 

  14. Mahfouz MR, Hoff WA, Komistek RD et al (2005) Effect of segmentation errors on 3D-to-2D registration of implant models in X-ray images. J Biomech 38:229–239. doi:10.1016/j.jbiomech.2004.02.025

    Article  Google Scholar 

  15. Suggs JF, Kwon Y-M, Durbhakula S et al (2008) Comparison of in-vivo kinematics and contact in a conventional and a high flexion CR TKA design. In: Proceedings of the 54th ORS, San Francisco, CA

  16. Taylor RH, Lavellee S, Burdes C et al (1996) Computer-integrated surgery. MIT Press, Cambridge, pp 425–449

    Google Scholar 

  17. Tomasi G, Kanade T (1992) Shape and motion from image streams under orthography: a factorization method. Int J Comp Vis 9:137–154. doi:10.1007/BF00129684

    Article  Google Scholar 

  18. Valstar ER, de Jong FW, Vrooman HA et al (2001) Model-based Roentgen stereophotogrammetry of orthopaedic implants. J Biomech 34:715–722. doi:10.1016/S0021-9290(01)00028-8

    Article  Google Scholar 

  19. Weng J, Cohen P, Herniou M (1992) Camera calibration with distortion models and accuracy evaluation. IEEE Trans Pattern Anal Machine Intel 14:965–980. doi:10.1109/34.159901

    Article  Google Scholar 

  20. Yamazaki T, Watanabe T, Nakajima Y et al (2004) Improvement of depth position in 2-D/3-D registration of knee implants using single-plane fluoroscopy. IEEE Trans Med Imag 23:602–612. doi:10.1109/TMI.2004.826051

    Article  Google Scholar 

  21. You BM, Siy P, Andrest W et al (2001) In vivo measurement of 3-D skeletal kinematics from sequences of biplane radiographs: application to knee kinematics. IEEE Trans Med Imag 20:514–525. doi:10.1109/42.929617

    Article  Google Scholar 

  22. Zuffi S, Leardini A, Catani F et al (1999) A model-based method for the reconstruction of total knee replacement kinematics. IEEE Trans Med Imag 18:981–991

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Dr. Ryuji Nagamine, Yoshizuka-Hayashi Hospital, Fukuoka, Japan. This research program is supported by the Japanese Government Grand-in Aid for General Scientific Research (2007, No. 17300156).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shunji Hirokawa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hirokawa, S., Abrar Hossain, M., Kihara, Y. et al. A 3D kinematic estimation of knee prosthesis using X-ray projection images: clinical assessment of the improved algorithm for fluoroscopy images. Med Biol Eng Comput 46, 1253–1262 (2008). https://doi.org/10.1007/s11517-008-0398-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-008-0398-8

Keywords

Navigation