Skip to main content
Log in

Clinical monitoring of torso deformities in scoliosis using structured splines models

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

This paper describes the use of structured splines indices for the clinical monitoring of torso deformity in scoliosis. Structured splines indices are computed from the distribution of points of maximal curvature (dominant points) of an object. The suitability and robustness of the indices for this application is assessed by ascertaining their robustness to inevitable torso shape variations due to sway and breathing and the variability in their values relative to existing clinical measures of deformity. To assess the consistency of these indices with other indices in use for this application, they were used to assess the relative information contents of the front and back of the torso. Results show that structured splines indices are more robust than existing clinical measures for monitoring torso deformity in scoliosis. Results also show that the scoliosis information content ratio of the back torso to the front torso is three to one.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Ajemba PO (2007) Structured Splines Models: Theory and Application to the Clinical Management of Torso Deformities, PhD Thesis, University of Alberta, Edmonton, Canada

  2. Ajemba PO, Durdle NG, Hill DL, Raso VJ (2007) Classifying torso deformity in scoliosis using orthogonal maps of the torso. Med Biol Eng Comput 45:575–584. doi:10.1007/s11517-007-0192-z

    Article  Google Scholar 

  3. Ajemba PO, Durdle NG, Hill DL, Raso VJ (2007) A torso imaging system for quantifying the deformity associated with scoliosis. IEEE Trans Instrum Meas 56:1520–1526. doi:10.1109/TIM.2007.903592

    Article  Google Scholar 

  4. Ajemba PO, Durdle NG, Raso VJ (2008) Validation of an imaging and analysis system for assessing torso deformities. Comput Biol Med 38(3):294–303. doi:10.1016/j.compbiomed.2007.10.008

    Article  Google Scholar 

  5. Cobb JR (1948) Outline for the study of scoliosis, instructional course lectures. The American academy of orthopedic surgeons 5:261–275

    Google Scholar 

  6. Desroches G, Aubin CE, Sucato DJ, Rivard CH (2007) Simulation of an anterior spine instrumentation in adolescent idiopathic scoliosis using a flexible multi-body model. Med Biol Eng Comput 45(8):759–768. doi:10.1007/s11517-007-0214-x

    Article  Google Scholar 

  7. Duke K, Aubin CE, Dansereau J, Labelle H (2008) Computer simulation for the optimization of patient positioning in spinal deformity instrumentation surgery. Med Biol Eng Comput 46(1):33–41. doi:10.1007/s11517-007-0265-z

    Article  Google Scholar 

  8. Hoke MA (1903) A study of a case of lateral curvature of the spine: report on an operation for the deformity. Am J Orthop Surg 1:168–208

    Google Scholar 

  9. Jaremko JL, Poncet P, Ronsky J, Harder J, Dansereau J, Labelle H et al (2002) Indices of torso asymmetry related to spinal deformity in scoliosis. Clin Biomech (Bristol, Avon) 17:559–568. doi:10.1016/S0268-0033(02)00099-2

    Article  Google Scholar 

  10. Kadoury S, Cheriet F, Laporte C et al (2007) A versatile 3D reconstruction system of the spine and pelvis for clinical assessment of spinal deformities. Med Biol Eng Comput 45(6):591–602. doi:10.1007/s11517-007-0182-1

    Article  Google Scholar 

  11. Levy AR, Goldberg MS, Mayo NE et al (1996) Reducing the lifetime risk of cancer from spinal radiographs among people with adolescent idiopathic scoliosis. Spine 21:1540–1548. doi:10.1097/00007632-199607010-00011

    Article  Google Scholar 

  12. Liu XC, Thometz JG, Lyon RM, Klein J (2001) Functional classification of patients with idiopathic scoliosis assessed by the Quantec system. Spine 26(11):1274–1279. doi:10.1097/00007632-200106010-00020

    Article  Google Scholar 

  13. Pazos V, Cheriet F, Song L, Labelle H, Dansereau J (2005) Accuracy assessment of human trunk surface 3D reconstructions from an optical digitising system. Med Biol Eng Comput 43(1):11–15. doi:10.1007/BF02345117

    Article  Google Scholar 

  14. Raso VJ, Lou E, Hill DL, Mahood JK, Moreau MJ, Durdle NG (1998) Trunk distortion in adolescent idiopathic scoliosis. J Pediatr Orthop 18(3):222–226. doi:10.1097/00004694-199803000-00017

    Article  Google Scholar 

  15. Stokes IAF, Moreland MS (1989) Concordance of back surface asymmetry and spine shape in idiopathic scoliosis. Spine 14:73–78. doi:10.1097/00007632-198901000-00015

    Article  Google Scholar 

  16. Suzuki N, Armstrong GWD, Armstrong J (1981) Application of Moiré topography to spinal deformity. In: Moreland MS, Pope MH, Armstrong GWD (eds) Moiré fringe topography and spinal deformity. Pergamon Press, New York, pp 225–240

  17. Theologis TN, Fairbank JC, Turner-Smith AR, Pantazopoulos T (1997) Early detection of progression in AIS by measurement of changes in back shape with the integrated shape imaging system scanner. Spine 22(11):1223–1227. doi:10.1097/00007632-199706010-00010

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter O. Ajemba.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ajemba, P.O., Durdle, N.G. & James Raso, V. Clinical monitoring of torso deformities in scoliosis using structured splines models. Med Biol Eng Comput 46, 1201–1208 (2008). https://doi.org/10.1007/s11517-008-0399-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-008-0399-7

Keywords

Navigation