Skip to main content

Advertisement

Log in

Fetal ultrasound image segmentation system and its use in fetal weight estimation

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

A semi-automated fetal ultrasound image segmentation system is developed to improve the estimation of fetal weight (EFW). Four standardized fetal parameters are measured by the proposed segmentation system: biparietal diameter, head circumference, abdominal circumference and femur length. Computerized measurements of 215 fetuses are compared with manual measurements in term of fitness analysis and difference analysis. Among 215 cases, computerized measurements of 103 fetuses within 3 days of delivery are utilized in the fetal weight estimation. The EFW based on computerized measurements and manual measurements are compared by using regression analysis, artificial neural network and support vector regression. By using different estimation methods, the computerized measurements decrease the EFW errors about 40–70 g. The lowest mean absolute percentage error of EFW decrease from 6.71% for manual measurements to 4.66% for computerized measurements. The proposed fetal ultrasound image segmentation system can provide more accurate EFW in antepartum examination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Aysal TC, Barner KE (2007) Rayleigh-maximum-likelihood filtering for speckle reduction of ultrasound images. IEEE Trans Med Imaging 26(5):712–727. doi:10.1109/TMI.2007.895484

    Article  Google Scholar 

  2. Bezdek JC (1980) A convergence theorem for the fuzzy ISODATA clustering algorithm. IEEE Trans Pattern Anal Mach Intell 1(2):1–8

    Article  Google Scholar 

  3. Brinkley JF, McCallum WD, Muramatsu SK, Liu DY (1984) Fetal weight estimation from lengths and volumes found by three-dimensional ultrasound measurements. J Ultrasound Med 3(4):163–168

    Google Scholar 

  4. Campbell S, Wilkin D (1975) Ultrasonic measurement of the fetal abdomen circumference in the estimation of fetal weight. Br J Obstet Gynaecol 82:689–697

    Google Scholar 

  5. Cevenini G, Severi FM, Bocchi C, Petraglia F, Barbini P (2008) An informative probability model enhancing real time echobiometry to improve fetal weight estimation accuracy. Med Biol Eng Comput 46:109–120. doi:10.1007/s11517-007-0299-2

    Article  Google Scholar 

  6. Chang TC, Robson SC, Spencer JA, Gallivan S (1993) Ultrasonic fetal weight estimation: analysis of inter- and intra-observer variability. J Clin Ultrasound 21:515–519. doi:10.1002/jcu.1870210808

    Article  Google Scholar 

  7. Chen SC, Zhang DQ (2004) Robust image segmentation using FCM with spatial constraints based on new kernel-induced distance measure. IEEE Trans Syst Man Cybern 34(4):1907–1916. doi:10.1109/TSMCB.2004.831165

    Article  Google Scholar 

  8. Chuang L, Hwang JY, Chang CH, Yu CH, Chang FM (2002) Ultrasound estimation of fetal weight with the use of computerized artificial neural network model. Ultrasound Med Biol 28(8):991–996. doi:10.1016/S0301-5629(02)00554-9

    Article  Google Scholar 

  9. Dudley NJ (2004) A systematic review of the ultrasound estimation of fetal weight. Ultrasound Obstet Gynecol 25(1):80–89. doi:10.1002/uog.1751

    Article  Google Scholar 

  10. Hadlock FP, Harrist RB, Sharman RS, Deter RL, Park SK (1985) Estimation of fetal weight with the use of head, body, and femur measurements—a prospective study. Am J Obstet Gynecol 151:333–337

    Google Scholar 

  11. Jardim SMGVB, Figueiredo MAT (2005) Segmentation of fetal ultrasound images. Ultrasound Med Biol 31(2):243–250. doi:10.1016/j.ultrasmedbio.2004.11.003

    Article  Google Scholar 

  12. Kass M, Witkin A, Terzopoulos D (1988) Snakes: active contour models. Int J Comput Vis 1(4):321–331. doi:10.1007/BF00133570

    Article  Google Scholar 

  13. Kiryati N, Eldar Y, Bruckstein AM (1991) A probabilistic Hough transform. Pattern Recognit 24(4):303–316. doi:10.1016/0031-3203(91)90073-E

    Article  MathSciNet  Google Scholar 

  14. Lu W, Tan J, Floyd R (2005) Automated fetal head detection and measurement in ultrasound images by iterative randomized Hough transform. Ultrasound Med Biol 31(7):929–936. doi:10.1016/j.ultrasmedbio.2005.04.002

    Article  Google Scholar 

  15. Michailovich OV, Tannenbaum A (2006) Despeckling of medical ultrasound images. IEEE Trans Ultrason Ferrolelectr Freq Control 53(1):64–78

    Article  Google Scholar 

  16. Perona P, Malik J (1990) Scale space and edge detection using anisotropic diffusion. IEEE Trans Pattern Mach Intell 12(7):629–639. doi:10.1109/34.56205

    Article  Google Scholar 

  17. Sanders R, James A (1985) The principles and practice of ultrasonography in obstetrics and gynecology. Appleton Century Crofts, Connecticut

    Google Scholar 

  18. Song XF, Han P, Zou L, Chen DZ, Hu SX (2004) A new method for estimation of fetal weight using support vector machine. Chin J Biomed Eng 23(6):516–522

    Google Scholar 

  19. Stetzer BP, Thomas A, Amini SB, Catalano PM (2002) Neonatal anthropometric measurements to predict birth weight by ultrasound. J Perinatol 22(5):397–402. doi:10.1038/sj.jp.7210754

    Article  Google Scholar 

  20. Vapnik VN (1998) Statistical learning theory. Wiley, New York

    MATH  Google Scholar 

  21. Wang SR, Sun YN, Chang FM (2008) Artifact removal and texture-based rendering for visualization of 3D fetal ultrasound images. Med Biol Eng Comput 46:575–588. doi:10.1007/s11517-007-0286-7

    Article  Google Scholar 

  22. Warsof SL, Wolf P, Coulehan J, Queenan JT (1986) Comparison of fetal weight estimation formulae with and without head measurements. Obstet Gynecol 67(4):569–573

    Google Scholar 

  23. Xu CY, Prince JL (1998) Snake, shapes, and gradient vector flow. IEEE Trans Image Process 7(3):359–369. doi:10.1109/83.661186

    Article  MATH  MathSciNet  Google Scholar 

  24. Xu L, Oja E, Kultanen P (1990) A new curve detection method: Randomized Hough transform (RHT). Pattern Recognit Lett 11(5):331–338. doi:10.1016/0167-8655(90)90042-Z

    Article  MATH  Google Scholar 

  25. Yu JH, Wang YY, Chen P, Shen YZ (2008) Fetal abdominal contour extraction and measurement in ultrasound images. Ultrasound Med Biol 34(2):169–182. doi:10.1016/j.ultrasmedbio.2007.06.026

    Article  Google Scholar 

  26. Yu YJ, Acton ST (2002) Speckle reducing anisotropic diffusion. IEEE Trans Image Process 11(11):1260–1270. doi:10.1109/TIP.2002.804276

    Article  MathSciNet  Google Scholar 

  27. Yuen HK, Illingworth J, Kitter J (1989) Detecting partially occluded ellipse using the Hough transform. Image Vis Comput 7(1):31–37. doi:10.1016/0262-8856(89)90017-6

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Basic Research Program of China (No. 2006CB705707), Natural Science Foundation of China (No. 30570488), Shanghai Leading Academic Discipline Project (No. B112) and Postgraduate Innovation Fund of Fudan University (No. EYH1220001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuanyuan Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yu, J., Wang, Y. & Chen, P. Fetal ultrasound image segmentation system and its use in fetal weight estimation. Med Biol Eng Comput 46, 1227–1237 (2008). https://doi.org/10.1007/s11517-008-0407-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-008-0407-y

Keywords

Navigation