Skip to main content
Log in

Mechanobiological bone growth: comparative analysis of two biomechanical modeling approaches

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

Mechanobiological growth is the process whereby bone growth is modulated by mechanical loading. Analytical formulations of mechanobiological growth have been developed by Stokes et al. (J Orthop Res 17(5):646–653, 1990) and Carter et al. (J Orthop Res 6:804–816, 1988). The purpose of this study was to compare these two modeling approaches in a finite element model of a vertebra to investigate whether growth pattern induced by these models were equivalent. A finite element model of a thoracic vertebra, integrating a conceptual model of the growth plate, was developed and combined with the mechanobiological growth models. This model was further used to simulate vertebral growth modulation resulting from different physiological loading conditions. Different growth magnitudes were obtained under compression and combined tension/shear loading, whereas dissimilar growth patterns were triggered by shear forces and combined compression/shear. These two models represent mechanobiological bone growth under limited mechanical environment. Carter’s model takes into account three-dimensional stress stimuli, but does not intrinsically incorporate the resulting growth orientation. Stokes’ model adequately represents the mechanobiological contribution of axial stresses but does not take into account the contribution of non-axial stresses, which can occur in complex mechanical environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Alberty A, Peltonen J, Ritsila V (1993) Effects of distraction and compression on proliferation of growth plate chondrocytes. A study in rabbits. Acta Orthop Scand 64:449–455

    Article  Google Scholar 

  2. Beaupre GS, Stevens SS, Carter DR (2000) Mechanobiology in the development, maintenance and degeneration of articular cartilage. J Rehabil R D 37:145–151

    Google Scholar 

  3. Bonnel F, Dimeglio A, Baldet P, Rabischong P (1984) Biomechanical activity of the growth plate. Clinical incidences. Anat Clin 6:53–61. doi:10.1007/BF01811214

    Article  Google Scholar 

  4. Carrier J, Aubin CE, Villemure I, Labelle H (2004) Biomechanical modeling of growth modulation following rib shortening or lengthening in adolescent idiopathic scoliosis. Med Biol Eng Comput 42(4):541–548. doi:10.1007/BF02350997

    Article  Google Scholar 

  5. Carter DR, Wong M (1988) The role of mechanical loading histories in the development of diarthrodial joint. J Orthop Res 6:804–816. doi:10.1002/jor.1100060604

    Article  Google Scholar 

  6. Carter DR, Wong M (1988) Mechanical stresses and endochondral ossification in the chondroepiphysis. J Orthop Res 6(1):148–154. doi:10.1002/jor.1100060120

    Article  Google Scholar 

  7. Dimeglio A, Bonnel F (1990) Le rachis en croissance. Springer, Paris, p 453

    Google Scholar 

  8. Farnum CE, Wilsman NJ (1998) Growth plate cellular function. In: Buckwalter JA, Ehrlich MG, Sandell LJ, Trippel SB (eds) Skeletal growth and development. AAOS, Rosemont, pp 203–243

    Google Scholar 

  9. Farnum CE, Wilsman NJ (1998) Effects of distraction and compression on growth plate function. In: Buckwalter JA, Ehrlich MG, Sandell LJ, Trippel SB (eds) Skeletal growth and development. AAOS, Rosemont, pp 517–530

    Google Scholar 

  10. Farnum CE, Nixon A, Lee AO, Kwan DT, Belanger L, Wilsman NJ (2000) Quantitative three-dimensional analysis of chondrocytic kinetic responses to short-term stapling of the rat proximal tibial growth plate. Cells Tissues Organs 167(4):247–258. doi:10.1159/000016787

    Article  Google Scholar 

  11. Frost HM (1990) Skeletal structural adaptations to mechanical usage (SATMU): 3. The hyaline cartilage modeling problem. Anat Rec 226(4):423–432. doi:10.1002/ar.1092260404

    Article  Google Scholar 

  12. Kim CH, You L, Yellowley CE, Jacobs CR (2006) Oscillatory fluid flow induced shear stress decreases osteoclastogenesis through RANKL and OPG signaling. Bone 39(5):1043–1047. doi:10.1016/j.bone.2006.05.017

    Article  Google Scholar 

  13. Lerner AL, Kuhn JL, Hollister SL (1998) Are regional variations in bone growth related to mechanical stress and strain parameters. J Biomech 31:327–335. doi:10.1016/S0021-9290(98)00015-3

    Article  Google Scholar 

  14. Leveau BF, Bernhardt DB (1984) Developmental biomechanics. Effect of forces on the growth, development, and maintenance of the human body. Phys Ther 64:1874–1882

    Google Scholar 

  15. Mao JJ, Nah HD (2004) Growth and development: hereditary and mechanical modulations. Am J Orthod Dentofacial Orthop 125(6):676–689. doi:10.1016/j.ajodo.2003.08.024

    Article  Google Scholar 

  16. Mehlman CT, Araghi A, Roy DR (1997) Hyphenated history: the Hueter–Volkmann Law. Am J Orthop 26(11):798–800

    Google Scholar 

  17. Moreland MS (1980) Morphological effect of torsion applied to growing bone. J Bone Joint Surg Br 62-B(2):230–237

    Google Scholar 

  18. Price JS, Oyajobi BO, Russell RGG (1994) The cell biology of bone growth. Eur J Clin Nutr 48(suppl 1):131–149

    Google Scholar 

  19. Sarwark J, Aubin CE (2007) Growth considerations of the immature spine. J Bone Joint Surg Am 89(suppl 1):8–13. doi:10.2106/JBJS.F.00314

    Article  Google Scholar 

  20. Schmidt H, Kettler A, Heuter F, Simon U, Claes L, Wilke HJ (2007) Intradiscal pressure, shear strain, and fiber strain in the intervertebral disc under combined loading. Spine 32(7):748–755. doi:10.1097/01.brs.0000259059.90430.c2

    Article  Google Scholar 

  21. Schwartz L, Maitournam H, Stolz C, Steayert JM, Ho Ba Tho MC, Halphen B (2003) Growth and cellular differentiation: a physica-biochemical conundrum? The example of the hand. Med Hypotheses 61(1):45–51. doi:10.1016/S0306-9877(03)00102-6

    Article  Google Scholar 

  22. Shefelbine SJ, Carter DS (2004) Mechanobiological prediction of growth front morphology in development hip dysplasia. J Orthop Res 22:346–352. doi:10.1016/j.orthres.2003.08.004

    Article  Google Scholar 

  23. Shefelbine SJ, Carter DS (2004) Mechnobiological predictions of femoral anteversion in cerebral palsy. Ann Biomed Eng 32(2):297–305. doi:10.1023/B:ABME.0000012750.73170.ba

    Article  Google Scholar 

  24. Shefelbine SJ, Tardieu C, Carter DR (2002) Development of the femoral bicondylar angle in hominid bipedalism. Bone 30(5):765–770. doi:10.1016/S8756-3282(02)00700-7

    Article  Google Scholar 

  25. Stevens SS, Beaupre GS, Carter DS (1999) Computer model of endochondral growth and ossification in long bones: biological and mechanobiological Influences. J Orthop Res 17(5):646–653. doi:10.1002/jor.1100170505

    Article  Google Scholar 

  26. Stokes IAF (2007) Analysis and simulation of progressive adolescent scoliosis by biomechanical growth modulation. Eur Spine J 16:1621–1628. doi:10.1007/s00586-007-0442-7

    Article  Google Scholar 

  27. Stokes IAF, Laible JP (1990) Three-dimension osseo-ligamentous model of the thorax representing initiation of scoliosis by asymmetric growth. J Biomech 23(6):589–595. doi:10.1016/0021-9290(90)90051-4

    Article  Google Scholar 

  28. Stokes IAF, Aronsson DD, Urban JPG (1994) Biomechanical factors influencing progression of angular skeletal deformities during growth. Eur J Musculoskelet Res 3:51–60

    Google Scholar 

  29. Stokes IAF, Mebte PL, Iatridis JC, Farnum CE, Aronsson DD (2002) Enlargement of growth plate chondrocytes modulated by sustained mechanical loading. J Bone Joint Surg Am 84:1842–1848

    Google Scholar 

  30. Stokes IAF, Gwadera J, Dimock AN, Farnum CE, Aronsson DD (2005) Modulation of vertebral and tibial growth by compression loading: diurnal versus full-time loading. J Orthop Res 23:188–195. doi:10.1016/j.orthres.2004.06.012

    Article  Google Scholar 

  31. Stokes IAF, Aronsson DD, Dimock AN, Cortright V, Beck S (2006) Endochondral growth in growth plates of three species at two anatomical locations modulated by mechanical compression and tension. J Orthop Res 24(6):1327–1334. doi:10.1002/jor.20189

    Article  Google Scholar 

  32. Stokes IAF, Clark KC, Farnum CE, Aronsson DD (2007) Alterations in the growth plate associated with growth modulation by sustained compression or distraction. Bone 41:197–205. doi:10.1016/j.bone.2007.04.180

    Article  Google Scholar 

  33. Sylvestre PL, Villemure I, Aubin CE (2007) Finite element modeling of the growth plate in a detailed spine model. Med Biol Eng Comput 45(10):977–988. doi:10.1007/s11517-007-0220-z

    Article  Google Scholar 

  34. Trepczik B, Lienau J, Schell H, Epari DR, Thompson MS, Hoffmann JE, Anke KR, Mundlos S, Dudam GN (2007) Endochondral ossification in vitro is influenced by mechanical bending. Bone 40:597–603. doi:10.1016/j.bone.2006.10.011

    Article  Google Scholar 

  35. Van Der Meulen MCH, Huiskes R (2002) Why mechanobiology? A survey article. J Biomech 35:401–414. doi:10.1016/S0021-9290(01)00184-1

    Article  Google Scholar 

  36. Villemure I, Aubin CE, Dansereau J, Labelle H (2002) Simulation of progressive deformities in adolescent idiopathic scoliosis using a biomechanical model integrating vertebral growth modulation. ASME J Biomech Eng 124:784–790. doi:10.1115/1.1516198

    Article  Google Scholar 

  37. Villemure I, Aubin CE, Dansereau J, Labelle H (2004) Biomechancial simulations of the spine deformation process in adolescent idiopathic scoliosis from different pathogenesis hypotheses. Eur Spine J 13(1):83–90. doi:10.1007/s00586-003-0565-4

    Article  Google Scholar 

  38. Villemure I, Chung MA, Seck CS, Kimm M, Matyas JR, Duncan NA (2005) Static compressive loading reduces the mRNA expression of type II and X collagen in rat growth-plate chondrocytes during post-natal growth. Connect Tissue Res 46(4–5):211–219. doi:10.1080/03008200500344058

    Article  Google Scholar 

  39. Wang X, Mao JJ (2002) Chondrocyte proliferation of the cranial base cartilage upon in vivo mechanical stresses. J Dent Res 81:701–705

    Article  Google Scholar 

  40. Wang Y, Middlecton F, Horton JA, Reichel L, Farnum CE, Damron TA (2004) Microarray analysis of proliferative and hypertrophic growth plate zones identifies differentiation markers and signal pathways. Bone 35:1273–1293. doi:10.1016/j.bone.2004.09.009

    Article  Google Scholar 

Download references

Acknowledgments

This project was funded by the Canada Research Chair Program, the Canadian Institutes of Health Research (CHIR), and the CIHR-MENTOR Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isabelle Villemure.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, H., Aubin, CÉ., Parent, S. et al. Mechanobiological bone growth: comparative analysis of two biomechanical modeling approaches. Med Biol Eng Comput 47, 357–366 (2009). https://doi.org/10.1007/s11517-008-0425-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-008-0425-9

Keywords

Navigation