Skip to main content
Log in

Mathematical modeling of electrical activity of uterine muscle cells

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

The uterine electrical activity is an efficient parameter to study the uterine contractility. In order to understand the ionic mechanisms responsible for its generation, we aimed at building a mathematical model of the uterine cell electrical activity based upon the physiological mechanisms. First, based on the voltage clamp experiments found in the literature, we focus on the principal ionic channels and their cognate currents involved in the generation of this electrical activity. Second, we provide the methodology of formulations of uterine ionic currents derived from a wide range of electrophysiological data. The model is validated step by step by comparing simulated voltage-clamp results with the experimental ones. The model reproduces successfully the generation of single spikes or trains of action potentials that fit with the experimental data. It allows analyzing ionic channels implications. Likewise, the calcium-dependent conductance influences significantly the cellular oscillatory behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Andersen HF, Barclay ML (1995) A computer model of uterine contractions based on discrete contractile elements. Obstet Gynecol 86(1):108–111. doi:10.1016/0029-7844(95)00111-4

    Article  Google Scholar 

  2. Anwer K et al (1993) Calcium-activated K+channels as modulators of human myometrial contractile activity. Am J Physiol 265(4 Pt 1):C976–C985

    Google Scholar 

  3. Arnaudeau S, Lepretre N, Mironneau J (1994) Chloride and monovalent ion-selective cation currents activated by oxytocin in pregnant rat myometrial cells. Am J Obstet Gynecol 171(2):491–501

    Google Scholar 

  4. Buhimschi C et al (1998) Uterine activity during pregnancy and labor assessed by simultaneous recordings from the myometrium and abdominal surface in the rat. Am J Obstet Gynecol 178:811–822. doi:10.1016/S0002-9378(98)70498-3

    Article  Google Scholar 

  5. Bursztyn L et al (2007) Mathematical model of excitation–contraction in a uterine smooth muscle cell. Am J Physiol Cell Physiol 292(5):C1816–C1829. doi:10.1152/ajpcell.00478.2006

    Article  Google Scholar 

  6. Chay TR, Keizer J (1983) Minimal model for membrane oscillations in the pancreatic beta-cell. Biophys J 42(2):181–190

    Article  Google Scholar 

  7. Coleman HA, Parkington HC (1987) Single channel Cland K+currents from cells of uterus not treated with enzymes. Pflugers Arch 410(4–5):560–562. doi:10.1007/BF00586540

    Article  Google Scholar 

  8. Coleman HA, Parkington HC (1990) Hyperpolarization-activated channels in myometrium: a patch clamp study. Prog Clin Biol Res 327:665–672

    Google Scholar 

  9. Fele-Zorz G et al (2008) A comparison of various linear and non-linear signal processing techniques to separate uterine EMG records of term and pre-term delivery groups. Med Biol Eng Comput 46:911–922

    Article  Google Scholar 

  10. Garfield RE (1994) Role of cell-to-cell coupling in control of myometrial contractility and labor. In: Garfield RE, Tabb TN (eds) Control of uterine contractility. C.P.I. Llc., Florida

  11. Hodgkin AL, Huxley AF (1952) A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol 117(4):500–544

    Google Scholar 

  12. Inoue Y et al (1990) Some electrical properties of human pregnant myometrium. Am J Obstet Gynecol 162(4):1090–1098

    Google Scholar 

  13. Kao CY, McCullough JR (1975) Ionic currents in the uterine smooth muscle. J Physiol 246(1):1–36

    Google Scholar 

  14. Khan RN et al (2001) Potassium channels in the human myometrium. Exp Physiol 86(2):255–264. doi:10.1113/eph8602181

    Article  Google Scholar 

  15. Knock G, Smirnov S, Aaronson P (1999) Voltage gated K+ currents in freshly isolated myocytes of the pregnant human myometrium. J Physiol 518:769–781. doi:10.1111/j.1469-7793.1999.0769p.x

    Article  Google Scholar 

  16. Kuriyama H, Suzuki H (1976) Changes in electrical properties of rat myometrium during gestation and following hormonal treatments. J Physiol 260:315–333

    Google Scholar 

  17. Marshall J (1990) Relation between membrane potential and spontaneous contraction of the uterus, in uterine contractility: mechanisms of control. In: Garfield R, Norwell M (eds) Sereno symposia, pp 3–7

  18. Marque C, Duchene J (1989) Human abdominal EHG processing for uterine contraction monitoring. Biotechnology 11:187–226

    Google Scholar 

  19. Marque C et al (1986) Uterine EHG processing for obstetrical monitoring. IEEE Trans Biomed Eng 33(12):1182–1187. doi:10.1109/TBME.1986.325698

    Article  Google Scholar 

  20. Miller SM, Garfield RE, Daniel EE (1989) Improved propagation in myometrium associated with gap junctions during parturition. Am J Physiol 256(1 Pt 1):C130–C141

    Google Scholar 

  21. Miyoshi H, Urabe T, Fujiwara A (1991) Electrophysiological properties of membrane currents in single myometrial cells isolated from pregnant rats. Pflugers Arch 419(3–4):386–393. doi:10.1007/BF00371121

    Article  Google Scholar 

  22. Moore JW, Ramon F (1974) On numerical integration of the Hodgkin and Huxley equations for a membrane action potential. J Theor Biol 45(1):249–273. doi:10.1016/0022-5193(74)90054-X

    Article  Google Scholar 

  23. Noble D (1962) A modification of the Hodgkin–Huxley equations applicable to Purkinje fibre action and pace-maker potentials. J Physiol 160:317–352

    Google Scholar 

  24. Ohya Y, Sperelakis N (1989) Fast Na+and slow Ca2+channels in single uterine muscle cells from pregnant rats. Am J Physiol 257(2 Pt 1):C408–C412

    Google Scholar 

  25. Parkington HC, Coleman HA (1988) Ionic mechanisms underlying action potentials in myometrium. Clin Exp Pharmacol Physiol 15(9):657–665. doi:10.1111/j.1440-1681.1988.tb01125.x

    Article  Google Scholar 

  26. Ramon F et al (1976) A model of propagation of action potentials in smooth muscle. J Theor Biol 59:381–408. doi:10.1016/0022-5193(76)90178-8

    Article  Google Scholar 

  27. Sanborn BM (1995) Ion channels and the control of myometrial electrical activity. Semin Perinatol 19(1):31–40. doi:10.1016/S0146-0005(95)80045-X

    Article  Google Scholar 

  28. Sanborn BM (2000) Relationship of ion channel activity to control of myometrial calcium. J Soc Gynecol Investig 7(1):4–11. doi:10.1016/S1071-5576(99)00051-9

    Article  Google Scholar 

  29. Shmigol A, Eisner D, Wray S (1998) Properties of voltage-activated [Ca2+]i transients in single smooth muscle cells isolated from pregnant rat uterus. J Physiol 511(3):803–811. doi:10.1111/j.1469-7793.1998.803bg.x

    Article  Google Scholar 

  30. Sperelakis N, Inoue Y, Ohya Y (1992) Fast Na+channels and slow Ca2+ current in smooth muscle from pregnant rat uterus. Mol Cell Biochem 114(1–2):79–89. doi:10.1007/BF00240301

    Google Scholar 

  31. Wang R, Karpinski E, Pang PK (1989) Two types of calcium channels in isolated smooth muscle cells from rat tail artery. Am J Physiol 256(5 Pt 2):H1361–H1368

    Google Scholar 

  32. Wang SY et al (1998) Potassium currents in freshly dissociated uterine myocytes from nonpregnant and late-pregnant rats. J Gen Physiol 112(6):737–756. doi:10.1085/jgp.112.6.737

    Article  Google Scholar 

  33. Yoshino M, Wang SY, Kao CY (1997) Sodium and calcium inward currents in freshly dissociated smooth myocytes of rat uterus. J Gen Physiol 110(5):565–577. doi:10.1085/jgp.110.5.565

    Article  Google Scholar 

  34. Young RC (1997) A computer model of uterine contractions based on action potential propagation and intercellular calcium waves. Obstet Gynecol 89(4):604–608. doi:10.1016/S0029-7844(96)00502-9

    Article  Google Scholar 

  35. Young RC, Herndon-Smith L (1991) Characterization of sodium channels in cultured human uterine smooth muscle cells. Am J Obstet Gynecol 164(1 Pt 1):175–181

    Google Scholar 

  36. Young RC, Smith LH, McLaren MD (1993) T-type and L-type calcium currents in freshly dispersed human uterine smooth muscle cells. Am J Obstet Gynecol 169(4):785–792

    Google Scholar 

Download references

Acknowledgments

This work was supported by a grant “Pôle GBM Périnatalité-Enfance” of the Picardy Region, France. It has been communicated and poster presented in proceedings of the third European Medical and Biological Engineering Conference, EMBC, held in Prague in November 2005.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandy Rihana.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rihana, S., Terrien, J., Germain, G. et al. Mathematical modeling of electrical activity of uterine muscle cells. Med Biol Eng Comput 47, 665–675 (2009). https://doi.org/10.1007/s11517-009-0433-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-009-0433-4

Keywords

Navigation