Skip to main content
Log in

Phantom haptic device upgrade for use in fMRI

  • Technical Note
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

This paper presents an upgrade of a Phantom Premium 1.5 haptic device for use within a functional magnetic resonance imaging (fMRI) environment. A special mechanical extension that allows the haptic device to operate at a safe distance from the high-density magnetic field of an fMRI scanner has been developed. Extended haptic system was subjected to a series of tests to confirm electromagnetic compatibility with the fMRI scanner, for which key results are presented. With this fMRI compatible haptic platform a human brain activation during controlled upper limb movements can be studied. A simple virtual environment reaching task was programmed to study brain motor control functions. At the end preliminary results of an ongoing neurophysiological study are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Bardorfer A, Munih M, Zupan A, Primozic A (2001) Upper limb motion analysis using haptic interface. IEEE/ASME Trans Mechatron 6(3): 253–260

    Article  Google Scholar 

  2. Chapman H, Gavrilescu M, Wang H, Kean M, Egan G, Castiello U (2002) Posterior parietal cortex control of reach-to-grasp movements in humans. Eur J Neurosci 15:2037–2042

    Article  Google Scholar 

  3. Chapuis D, Gassert R, Sache L, Burdet E, Bleuler H (2004) Design of a simple MRI/fMRI compatible force/torque sensor. In: Proceedings of the 2004 IEEE/RSJ international conference on intelligent robots and systems

  4. Chinzei K, Miller K (2001) MRI guided surgical robot. In: Proceedings of the 2001 Australian conference on robotics and automation

  5. Desmurget M, Gréa H, Grethe JS, Prablanc C, Alexander GE, Grafton ST (2001) Functional anatomy of nonvisual feedback loops during reaching: a positron emission tomography study. J Neurosci 21:2919–2929

    Google Scholar 

  6. Di Diodato LM, Mraz R, Baker SN, Graham SJ (2007) A haptic force feedback device for virtual reality-fMRI experiments. IEEE Trans Neural Syst Rehabil Eng 15(4):570–576

    Article  Google Scholar 

  7. Flueckiger M, Bullo M, Chapuis D, Gassert R, Perriard Y (2005) fMRI compatible haptic interface actuated with traveling wave ultrasonic motor. In: Proceedings of the 2005 industry applications conference, 40th IAS annual meeting, Vol. 3, pp 2075–2082

  8. Friston KJ, Holmes AP, Worsley KJ, Poline JP, Frith CD, Frackowiak RSJ (1995) Statistical parametric maps in functional imaging: a general linear approach. Hum Brain Mapp 2:189–210

    Article  Google Scholar 

  9. Gassert R, Moser R, Burdet E, Bleuler H (2006) MRI/fMRI-compatible robotic system with force feedback for interaction with human motion. IEEE/ASME Trans Mechatron 11:216–224

    Article  Google Scholar 

  10. Gassert R, Dovat L, Lambercy O, Ruffieux Y, Chapuis D, Ganesh G, Burdet E, Bleuler H (2006) A 2-DOF fMRI compatible haptic interface to investigate the neural control of arm movements. In: Proceedings of the 2006 IEEE international conference on robotics and automation

  11. Izawa J, Shimizu T, Aodai T, Kondo T, Gomi H, Toyama S, Ito K (2006). MR compatible manipulandum with ultrasonic motor for fMRI studies. In: Proceedings of the 2006 IEEE international conference on robotics and automation, Orlando

  12. Khanicheh A, Muto A, Triantafyllou C, Weinberg B, Astrakas L, Tzika A, Mavroidis C (2006) fMRI-compatible rehabilitation hand device. J NeuroEng Rehab 3:24

    Article  Google Scholar 

  13. Khanicheh A, Mintzopoulos D, Weinberg B, Tzika A, Mavroidis C (2007). MR_CHIROD v.2: a fMRI compatible mechatronic hand rehabilitation device. In: Proceedings of the 10th IEEE international conference on rehabilitation robotics

  14. Lehericy S, Bardinet E, Tremblay L, Van de Moortele PF, Pochon JB, Dormont D, Kim DS, Yelnik J, Ugurbil K (2006) Motor control in basal ganglia circuits using fMRI and brain atlas approaches. Cereb Cortex 16:149–161

    Article  Google Scholar 

  15. Mashimo T, Toyama S (2007) MRI compatibility of a manipulator using a spherical ultrasonic motor. In: Proceedings of the 12th IFToMM world congress

  16. Mraz R, Hong J, Quintin G, Staines WR, McIlroy WE, Zakzanis KK, Graham SJ (2003) A platform for combining virtual reality experiments with functional magnetic resonance imaging. Cyberpsychol Behav 6(4):359–368

    Article  Google Scholar 

  17. Naranjo JR, Brovelli A, Longo R, Budai R, Kristeva R, Battaglini PP (2007) EEG dynamics of the frontoparietal network during reaching preparation in humans. Neuroimage 34:1673–1682

    Article  Google Scholar 

  18. NEMA Standards Publication MS 1-2001, Determination of Signal-to-Noise Ratio (SNR) in Diagnostic Magnetic Resonance Imaging.

  19. Ogawa S, Menon RS, Kim SG, Ugurbil K (1998) On the characteristics of functional magnetic resonance imaging of the brain. Annu Rev Biophys Biomol Struct 27:447–474

    Article  Google Scholar 

  20. Patriciu A, Petrisor D, Muntener M, Mazilu D, Schar M, Stoianovici D (2007) Automatic brachytherapy seed placement under MRI guidance. IEEE Trans Biomed Eng 54:1499–1506

    Article  Google Scholar 

  21. Schaefers G (2008) Testing MR safety and compatibility. IEEE Eng Med Biol Mag 27(3):23–27

    Article  Google Scholar 

  22. Schueler BA, Parrish TB, Lin JC, Hammer BE, Pangrle BJ, Ritenour ER, Kucharczyk J, Truwit CL (1999) MRI compatibility and visibility assessment of implantable medical devices. J Magn Reson Imaging 9:596–603

    Article  Google Scholar 

  23. SIEMENS Medical Solutions (2006) MAGNETIC RESONANCE MAGNETOM Trio A Tim System, Technical Drawing

  24. Specifications Comparison For The Phantom Premium 1.0, 1.5, 1.5 High Force, And 3.0 Haptic Devices. http://www.sensable.com/products-datasheets.htm

  25. Toma K, Nakai T (2002) Functional MRI in human motor control studies and clinical applications. Magn Reson Med Sci 1:109–120

    Article  Google Scholar 

  26. Vogan J, Wingert A, Plante JS, Dubowsky S, Hafez M, Kacher D, Jolesz F (2004) Manipulation in MRI devices using electrostrictive polymer actuators with an application to reconfigurable imaging coils. In: Proceedings of the 2004 IEEE international conference on robotics and automation, New Orleans

  27. Yu N, Murr W, Blickenstorfer A, Kollias S, Riener R (2007) An fMRI compatible haptic interface with pneumatic actuation. In: Proceedings of the 10th IEEE international conference on rehabilitation robotics

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ales Hribar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hribar, A., Koritnik, B. & Munih, M. Phantom haptic device upgrade for use in fMRI. Med Biol Eng Comput 47, 677–684 (2009). https://doi.org/10.1007/s11517-009-0462-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-009-0462-z

Keywords

Navigation