Skip to main content
Log in

Computer simulation for the optimization of instrumentation strategies in adolescent idiopathic scoliosis

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

Recent studies reveal a large variability of instrumentation strategies in adolescent idiopathic scoliosis (AIS). Determination of the optimal configuration remains controversial. This study aims to develop a method to define the optimal surgical instrumentation strategy using a computer model implemented in a spine surgery simulator (S3). A total of 702 different strategies were simulated on a scoliotic patient using S3. Each configuration was assessed using objective functions that represented different correction objectives. Twelve geometric parameters were used in the three anatomic planes and mobility, and their relative weights were defined by a spine surgeon according to his objectives for correction of scoliosis. Six instrumentation parameters were manipulated in a uniform experimental design framework. An interpolation technique was used to build an approximation model from the simulation results and to locate instrumentation parameters minimizing the objective function. Small or no differences in the correction between the simulated optimal strategy and the real postoperative results of the instrumented segments were observed in the three planes. But the same overall correction was obtained by using fewer implants (only screws) and less instrumented levels. This study demonstrates the potential and feasibility of using a spine surgery simulator to optimize the planning of surgical instrumentation in AIS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Aubin CE, Dansereau J, Parent F et al (1997) Morphometric evaluations of personalised 3D reconstructions, geometric models of the human spine. Med Biol Eng Comput 35(6):611–618

    Article  Google Scholar 

  2. Aubin CE, Petit Y, Stokes IAF et al (2003) Biomechanical modeling of posterior instrumentation of the scoliotic spine. Comput Methods Biomech Biomed Eng 6:27–32

    Article  Google Scholar 

  3. Aubin CE, Labelle H, Ciolofan OC (2007) Variability of spinal instrumentation configurations in adolescent idiopathic scoliosis. Eur Spine J 16(1):57–64

    Article  Google Scholar 

  4. Aubin CE, Labelle H, Chevrefils C et al (2008) Pre-operative planning simulator for spinal deformity surgeries. Spine 23:2143–2152

    Article  Google Scholar 

  5. Bjerkreim I, Steen H, Brox JI (2007) Idiopathic scoliosis treated with Cotrel-Dubousset instrumentation: evaluation 10 years after surgery. Spine 32(19):2103–2110

    Article  Google Scholar 

  6. Bridwell KH (1999) Surgical treatment of idiopathic adolescent scoliosis. Spine 24:2607–2616

    Article  Google Scholar 

  7. Carrier J, Aubin CE, Villemure I et al (2004) Biomechanical modelling of growth modulation following rib shortening or lengthening in adolescent idiopathic scoliosis. Med Biol Eng Comput 42:541–548

    Article  Google Scholar 

  8. Chang KW (2003) Cantilever bending techniques for the treatment of large and rigid scoliosis. Spine 28:2452–2458

    Article  Google Scholar 

  9. Cobb JR (1948) Outline for the study of scoliosis. In: Instructional course lectures, vol 5. American Academy of Orthopaedic Surgeons, Ann Arbor, pp 61–75

  10. Dar FH, Meakin JR, Aspden RM (2002) Statistical methods in finite element analysis. J Biomech 35:1155–1161

    Article  Google Scholar 

  11. De Jonge T, Dubousset JF, Illes T (2002) Sagittal plane correction in idiopathic scoliosis. Spine 27:754–760

    Article  Google Scholar 

  12. Delorme S, Labelle H, Poitras B, Rivard CH, Coillard C, Dansereau J (2000) Pre-, intra-, and postoperative three-dimensional evaluation of adolescent idiopathic scoliosis. J Spinal Disord 13(2):93–101

    Article  Google Scholar 

  13. Delorme S, Petit Y, De Guise JA et al (2003) Assessment of the 3-D reconstruction and high-resolution geometrical modeling of the human skeletal trunk from 2-D radiographic images. IEEE Trans Biomed Eng 50:989–998

    Article  Google Scholar 

  14. Desroches G, Aubin CE, Sucato DJ et al (2007) Simulation of an anterior spine instrumentation in adolescent idiopathic scoliosis using a flexible multi-body model. Med Biol Eng Comput 45(8):759–768

    Article  Google Scholar 

  15. Dobbs MB, Lenke LG, Walton T (2004) Can we predict the ultimate lumbar curve in adolescent idiopathic scoliosis patients undergoing a selective fusion with undercorrection of the thoracic curve? Spine 29(3):277–285

    Article  Google Scholar 

  16. Fang KT, Lin DKJ, Winker P et al (2000) Uniform design: theory and application. Technometries 42(3):237–248

    Article  MATH  MathSciNet  Google Scholar 

  17. Fang KT, Ma CX, Winker P (2002) Centered L-2-discrepancy of random sampling and latin hypercube design, and construction of uniform designs. Math Comput 71(237):275–296

    MATH  MathSciNet  Google Scholar 

  18. Gardner-Morse MG, Laible JP, Stokes IA (1990) Incorporation of spinal flexibility measurements into finite element analysis. J Biomech Eng 112:481–483

    Article  Google Scholar 

  19. Ghista GR, Viviani K, Subbaraj PJ et al (1988) Biomechanical basis of optimal scoliosis surgical correction. J Biomech 21(2):77–88

    Article  Google Scholar 

  20. Gignac D, Aubin CE, Dansereau J et al (2000) Optimization method for 3D bracing correction of scoliosis using a finite element model. Eur Spine J 9:185–190

    Article  Google Scholar 

  21. Kim YJ, Lenke LG, Kim J et al (2006) Comparative analysis of pedicle screw versus hybrid instrumentation in posterior spinal fusion of adolescent idiopathic scoliosis. Spine 31(3):291–298

    Article  Google Scholar 

  22. Lee CK, Denis F, Winter RB et al (1993) Analysis of the upper thoracic curve in surgically treated idiopathic scoliosis. A new concept of the double thoracic curve pattern. Spine 18:1599–1608

    Article  Google Scholar 

  23. Lee SM, Suk S, Chung ER (2004) Direct vertebral rotation: a new technique of three-dimensional deformity correction with segmental pedicle screw fixation in adolescent idiopathic scoliosis. Spine 29:343–349

    Article  Google Scholar 

  24. Lenke LG, Betz RR, Harms J et al (2001) Adolescent idiopathic scoliosis: a new classification to determine extent of spinal arthrodesis. J Bone Joint Surg Am 83:1169–1181

    Google Scholar 

  25. Lenke LG, Betz RR, Haher TR et al (2001) Multisurgeon assessment of surgical decision making in adolescent idiopathic scoliosis: curve classification, operative approach, and fusion levels. Spine 26:2347–2353

    Article  Google Scholar 

  26. Majdouline Y, Aubin CE, Robitaille M et al (2007) Scoliosis correction objectives in adolescent idiopathic scoliosis. J Pediatr Orthop 27(7):775–781

    Google Scholar 

  27. Majdouline Y, Aubin CE, Sangole A et al (2009) The effect of correction objectives on instrumentation strategies in adolescent idiopathic scoliosis. Eur Spine J (submitted)

  28. Mason DE, Schindler A, King N (1998) Estimation of the lumbar curve magnitude with correction of the right thoracic curve in idiopathic scoliosis. J Pediatr Orthop 18(2):168–172

    Article  Google Scholar 

  29. The MathWorks Inc (2001) Optimization toolbox user’s guide [computer program], version 2. The MathWorks, Inc, Natick. http://www.mathworks.com

  30. Mermer MJ, Boachie-Adjei O, Rawlins BA et al (2006) Comprehensive analysis of cantilever, translational, and modular corrective techniques in adults with scoliosis treated with surgery to the sacropelvis. J Spinal Disord Tech 19(7):513–522

    Article  Google Scholar 

  31. Moe JH, Byrd JA (1987) Idiopathic scoliosis. In: Bradford DS, Lonstein JE, Moe JH, Ogilvie JW, Winter RB (eds) Moe’s textbook of scoliosis and other spinal deformities, 2nd edn. WB Saunders, Philadelphia, pp 191–232

  32. O’Brien MF, Kuklo TR, Blanke KM et al (2004) The Spinal Deformity Study Group radiographic measurement manual. Medtronic Sofamor Danek, Memphis

    Google Scholar 

  33. Panjabi MM, Brand RA, White AA (1976) Mechanical properties of the human thoracic spine as shown by three-dimensional load-displacement curves. J Bone Joint Surg 58:642–652

    Google Scholar 

  34. Petit Y, Aubin CE, Labelle H (2004) Patient-specific mechanical properties of a flexible multi-body model of the scoliotic spine. Med Biol Eng Comput 42:55–60

    Article  Google Scholar 

  35. Robitaille M, Aubin CE, Labelle H (2007) Intra and interobserver variability of preoperative planning for surgical instrumentation in adolescent idiopathic scoliosis. Eur Spine J 16(10):1604–1614

    Article  Google Scholar 

  36. Robitaille M, Aubin CE, Labelle H (2009) Effects of alternative instrumentation strategies in adolescent idiopathic scoliosis: a biomechanical analysis. J Orthop Res 27(1):104–113

    Article  Google Scholar 

  37. Sacks J, Welch WJ, Mitchell TJ et al (1989) Design and analysis of computer experiments. Stat Sci 4(4):409–435

    Article  MATH  MathSciNet  Google Scholar 

  38. Stokes IAF, Bigalow LC, Moreland MS (1986) Measurement of axial rotation of vertebra in scoliosis. Spine 11:213–218

    Article  Google Scholar 

  39. Stokes IAF, Bigalow IC, Moreland MS (1987) Three-dimensional spinal curvature in idiopathic scoliosis. J Orthop Res 5:102–113

    Article  Google Scholar 

  40. Villemure I, Aubin CE, Grimard G et al (2001) Progression of vertebral and spinal three dimensional deformities in adolescent idiopathic scoliosis. Spine 26:2244–2250

    Article  Google Scholar 

  41. Weinstein L (1994) Pediatric spine surgery (principles and practice), vol 2. Lippincott Williams & Wilkins, Philadelphia

    Google Scholar 

  42. Weinstein L (2001) Pediatric spine surgery. Lippincott Williams & Wilkins, Philadelphia

    Google Scholar 

  43. Wynarsky GT, Schultz AB (1991) Optimization of skeletal configuration: studies of scoliosis correction biomechanics. J Biomech 24(8):721–732

    Article  Google Scholar 

Download references

Acknowledgments

This study was funded by the Natural Sciences and Engineering Research Council of Canada, the Canada Research Chair Program and an unrestricted educational grant from Medtronic.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carl-Eric Aubin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Majdouline, Y., Aubin, CE., Sangole, A. et al. Computer simulation for the optimization of instrumentation strategies in adolescent idiopathic scoliosis. Med Biol Eng Comput 47, 1143–1154 (2009). https://doi.org/10.1007/s11517-009-0509-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-009-0509-1

Keywords

Navigation