Skip to main content
Log in

Stopping mechanism for capsule endoscope using electrical stimulus

  • Technical Note
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

An ingestible capsule, which has the ability to stop at certain locations in the small intestine, was designed and implemented to monitor intestinal diseases. The proposed capsule can contract the small intestine by using electrical stimuli; this contraction causes the capsule to stop when the maximum static frictional force (MSFF) is larger than the force of natural peristalsis. In vitro experiments were carried out to verify the feasibility of the capsule, and the results showed that the capsule was successfully stopped in the small intestine. Various electrodes and electrical stimulus parameters were determined on the basis of the MSFF. A moderate increment of the MSFF (12.7 ± 4.6 gf at 5 V, 10 Hz, and 5 ms) and the maximum increment of the MSFF (56.5 ± 9.77 gf at 20 V, 10 Hz, and 5 ms) were obtained, and it is sufficient force to stop the capsule.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Abbreviations

MSFF:

Maximum static frictional force

CIF:

Common image format ((352 × 288) resolution)

ESC:

Electrical stimulus capsule

SUS316L:

Low carbon stainless

References

  1. Accoto D, Stefanini C, Phee L, Arena A, Pernorio G, Menciassi A, Carrozza MC, Dario P (2001) Measurements of the frictional properties of the gastrointestinal tract. World Tribol Congr 2001 3–7

  2. Amaris MA, Rashev PZ, Mintchev MP, Bowes KL (2002) Microprocessor controlled movement of solid colonic content using sequential neural electrical stimulation. Gut 50(4):475–479. doi:10.1136/gut.50.4.475

    Google Scholar 

  3. Beak NK, Sung IH, Kim DE (2004) Frictional resistance characteristics of a capsule inside the intestine for microendoscope design. Proc Inst Mech Eng 218:193–201. doi:10.1243/095441104323118914

    Article  Google Scholar 

  4. Burke CA, Santisi J, Church J, Levinthal G (2005) The utility of capsule endoscopy small bowel surveillance in patients with polyposis. Am J Gastroenterol 100:1498–1502. doi:10.1111/j.1572-0241.2005.41506.x

    Article  Google Scholar 

  5. Chiba A, Sendoh M, Ishiyama K, Arai I (2005) Magnetic actuator for capsule endoscope navigation system. Magn Conf 1251–1252

  6. Dario P, Carrozza MC, Pietrabissa A (1999) Development and in vitro tests of a miniature robotic system for computer assisted colonoscopy. Comput Aided Surg 4:1–14

    Google Scholar 

  7. Dario P, Carrozza MC, Benvenuto A, Menciassi A (2000) Micro-system in biomedical applications. J Micromech Microeng 10:235–244

    Article  Google Scholar 

  8. Ell C, Remke S, May A, Helou L, Henrich R, Mayer G (2004) The first prospective controlled trial comparing wireless capsule endoscopy with push enteroscopy in chronic gastrointestinal bleeding. Endoscopy 34:685–689. doi:10.1055/s-2002-33446

    Article  Google Scholar 

  9. Familoni BO, Abell TL, Nemoto D, Voeller G, Johnson B (1997) Efficacy of electrical stimulation at frequencies higher than basal rate in canine stomach. Dig Dis Sci 42:892–897. doi:10.1023/A:1018804128695

    Article  Google Scholar 

  10. Glass P, Cheung E, Sitti M (2008) A legged anchoring mechanism for capsule endoscopes using micropatterned adhesives. IEEE Trans Biomed Eng 55:2759–2767. doi:10.1109/TBME.2008.2002111

    Article  Google Scholar 

  11. Guesev EI (1997) On the permission of using in medical practice of the autonomous electric stimulant of the gastrointestinal and mucosae (AESGTM). Ministry of Health, Russian Federation 1–2

  12. Iddan G, Meron G, Glukhovsky A, Swain P (2000) Wireless capsule endoscopy. Nature 405:405–417. doi:10.1038/35013140

    Article  Google Scholar 

  13. John EP, Mitchal AS, Thomas JL, Qing Z, Peter ZK (2005) Bravo capsule placement in the gastric cardia: a novel method for analysis of proximal stomach acid environment. Am J Gastroenterol 100:1721–1727. doi:10.1111/j.1572-0241.2005.41733.x

    Article  Google Scholar 

  14. Kim JD, Ryu M, Hwang JS, Kim JW (2008) Location estimation of an in vivo robotic capsule relative to arrayed power transmission coils. Med Biol Eng Comput 46:621–624. doi:10.1007/s11517-008-0313-3

    Article  Google Scholar 

  15. Lee YU, Kim JD, Ryu MH, Kim JW (2006) In vivo robotic capsules: determination of the number of turns of its power receiving coil. Med Biol Eng Comput 44:1121–1125. doi:10.1007/s11517-006-0128-z

    Article  Google Scholar 

  16. Lin Z, Forster J, Sarosiek I, Mccallum RW (2003) Treatment of gastroparesis with electrical. Dig Dis Sci 48:837–848. doi:10.1023/A:1023099206939

    Article  Google Scholar 

  17. Meron G (2000) Development of the swallowable video capsule (M2A). Gastrointest Endosc 52:817–819. doi:10.1067/mge.2000.110204

    Article  Google Scholar 

  18. Moglia A, Menciass A, Schurr MO, Dario P (2007) Wireless capsule endoscopy: from diagnostic devices to multipurpose robotic systems. Biomed Microdevices 9:235–243. doi:10.1007/s10544-006-9025-3

    Article  Google Scholar 

  19. Moon YK, Lee JH, Park HJ, Lee JG, Ryu JJ, Woo SH, Kim MK, Won CH, Kim TW, Cho JH, Choi HC (2007) Fabrication of the wireless systems for controlling movements of the electrical stimulus capsule in the small intestines. IEICE Trans Inf Syst 90-D:586–593. doi:10.1093/ietisy/e90-d.2.586

  20. Mosse CA, Mills TN, Appleyard MN, Kadirkamanathan SS, Swain CP (2001) Electrical stimulation for propelling endoscopes. Gastrointest Endosc 54:79–83. doi:10.1067/mge.2001.116327

    Article  Google Scholar 

  21. Ouyang H, Yin J, Wang Z, Pasricha PJ, Chen JDZ (2002) Electroacupuncture accelerates gastric emptying in association with changes in vagal activity. Am J Physiol-Gastrointest Liver Physiol 282:G390–G396. doi:10.1152/ajpgi.00272.2001

    Google Scholar 

  22. Phee L, Accot D, Menciassi A, Stefanini C, Carrozza MC, Dario P (2002) Analysis and development of locomotion devices for the gastrointestinal tract. IEEE Trans Biomed Eng 49:613–616. doi:10.1109/TBME.2002.1001976

    Article  Google Scholar 

  23. Ryu MH, Kim JD, Chin HU, Kim JW, Song SY (2007) Three-dimensional power receiver for in vivo robotic capsules. Med Biol Eng Comput 45:997–1002. doi:10.1007/s11517-007-0223-9

    Article  Google Scholar 

  24. Sendoh M, Ishiyama K, Arai KI (2003) Fabrication of magnetic actuator for use in a capsule endoscope. IEEE Trans Magn 39:3232–3234. doi:10.1109/TMAG.2003.816731

    Article  Google Scholar 

  25. Silverthorn DU (1998) Human physiology: an integrated approach. Prentice Hall, New Jersey

  26. Woo SH, Kim TW, Lee JH, Kim PU, Won CH, Cho JH (2009) Implemented edge shape of an electrical stimulus capsule. Int J Med Robot Comput Assist Surg 5:59–65. doi:10.1002/rcs.235

    Article  Google Scholar 

  27. Zuo J, Yan G, Gao Z (2005) A micro creeping robot for colonoscopy based on the earthworm. J Med Eng Technol 29:1–6. doi:10.1080/03091900410001662341

    Article  Google Scholar 

Download references

Acknowledgment

This work was supported by grant No. 10031779 from the Strategic Technology Development Program of Ministry of Knowledge Economy. Also, this work was supported by the Grant of the Korean Ministry of Education, Science and Technology (The Regional Core Research Program/Anti-aging and Well-being Research Center).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin Ho Cho.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Woo, S.H., Kim, T.W. & Cho, J.H. Stopping mechanism for capsule endoscope using electrical stimulus. Med Biol Eng Comput 48, 97–102 (2010). https://doi.org/10.1007/s11517-009-0553-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-009-0553-x

Keywords

Navigation