Skip to main content

Advertisement

Log in

Reexamination of risk criteria in dengue patients using the self-organizing map

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

Even though the World Health Organization criteria’s for classifying the dengue infection have been used for long time, recent studies declare that several difficulties have been faced by the clinicians to apply these criteria. Accordingly, many studies have proposed modified criteria to identify the risk in dengue patients based on statistical analysis techniques. None of these studies utilized the powerfulness of the self-organized map (SOM) in visualizing, understanding, and exploring the complexity in multivariable data. Therefore, this study utilized the clustering of the SOM technique to identify the risk criteria in 195 dengue patients. The new risk criteria were defined as: platelet count less than or equal 40,000 cells per mm3, hematocrit concentration great than or equal 25% and aspartate aminotransferase (AST) rose by fivefold the normal upper limit for AST/alanine aminotransfansferase (ALT) rose by fivefold the normal upper limit for ALT. The clusters analysis indicated that any dengue patient fulfills any two of the risk criteria is consider as high risk dengue patient.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Bandyopadhyay S, Lucy CS, Kroeger A (2006) Classifying dengue: a review of the difficulties in using the WHO case classification for dengue haemorrhagic fever. Trop Med Int Health 11(8):1238–1255

    Article  Google Scholar 

  2. Celia C et al (2005) Comparison of clinical features and hematologic abnormalities between dengue fever and dengue hemorrhagic fever among children in the Philippines. Am Soc Trop Med Hyg 73(2):435–440

    MathSciNet  Google Scholar 

  3. Davies DL, Bouldin DW (1979) A cluster separation measure. IEEE Trans Pattern Anal Mach Intell 1(2):224–227

    Article  Google Scholar 

  4. Garceia HL, Machon I (2004) Self-organizing map and clustering for wastewater treatment monitoring. Eng Appl Artif Intell 17:215–225

    Article  Google Scholar 

  5. Gubler DJ (1998) Dengue and dengue hemorrhagic fever. Clin Microbiol Rev 11:480–496

    Google Scholar 

  6. Gubler GJ (2002) Epidemic dengue/dengue hemorrhagic fever as a public health, social and economic problem in the 21st century. Trends Microbiol 10:100–103

    Article  Google Scholar 

  7. Gubler DJ, Kuno G (1997) Dengue and dengue hemorrhagic fever. CAB International, Wallingford, UK

    Google Scholar 

  8. Hales S, de Wet N, Maindonald J, Woodward A (2002) Potential effect of population and climate changes on global distribution of dengue fever: an empirical model. Lancet 360:830–834

    Article  Google Scholar 

  9. Hartiga J (1975) Clustering algorithms. Wiley, New York

    Google Scholar 

  10. Haykin S (1999) Neural networks: a comprehensive foundation, 2nd edn. Prentice Hall, New Jersey

    MATH  Google Scholar 

  11. Huysmans J, Baesens B, Van Gestel T, Vanthienen J (2006) Failure prediction with self organizing maps. Expert Syst Appl 30:479–487

    Article  Google Scholar 

  12. Ibrahim F (2005) Prognosis of dengue fever and dengue hemorrhagic fever using bioelectrical impedance. Ph.D thesis, University of Malaya, Malaysia

  13. Ibrahim F, Taib MN, Wan Abas WAB, Chan CG, Sulaiman S (2005) A novel approach to classify risk in dengue hemorrhagic fever (DHF) using bioelctrical impedance. IEEE Trans Instrum Meas 54(1):237–244

    Google Scholar 

  14. Ibrahim F, Taib MN, Wan Abas WAB, Chan CG, Sulaiman S (2008) A new approach to classify risk in dengue infection using bioelectrical impedance analysis (BIA). World Health Organization Dengue Bull, vol 31. World Health Organization, The south-east Asia and western pacific regions of Dengue Bulletin

  15. Kalayanarooj et al (1997) Early clinical and laboratory indicators of acute dengue illness. J Infect Dis 176:313–321

  16. Kohonen T (1990) The self-organizing map. Proc IEEE 78:1464–1480

    Article  Google Scholar 

  17. Kohonen T (1997) Self-organizing maps, 2nd edn. Springer-Verlag, Berlin

    MATH  Google Scholar 

  18. Laiho J, Raivio K, Lehtimäki P, Hätönen K, Simula O (2005)Advanced analysis methods for 3G cellular networks. IEEE Trans Wirel Commun 4(3):930–942

    Google Scholar 

  19. Lucy CSL et al (2002) Risk factors for hemorrhage in severe dengue infections. J Pediatr 140(5):629–631

    Article  Google Scholar 

  20. MacQueen J (1967) Some methods for classification and analysis of multivariate observations. In: Proceedings of the 5th Berkeley Symposium, vol 1, pp 281–297

  21. Monath TP (1994) Dengue: the risk to developed and developing countries. Proc Natl Acad Sci USA 91:2395–2400

    Article  Google Scholar 

  22. Narayanan M, Aravind MA, Ambikapathy P, Prema R, Jeyapaul MP (2003) Dengue fever—clinical and laboratory parameters associated with complications. Dengue Bull 27:108–115

    Google Scholar 

  23. Oxford University Press (1990) Concise medical dictionary, 3rd edn. Oxford University Press, Oxford

  24. Shivbalan SO, Anandnathan K, Balasubramanian S, Datta M, Amalraj E (2004) Predictores of spontaneous bleeding in dengue. Indian J Pediatr 71(1):33–36

    Article  Google Scholar 

  25. Tantracheewathorn T, Tantracheewathorn S (2007) Risk factors of dengue shock syndrome in children. J Med Assoc Thai 90(2):272–277

    Google Scholar 

  26. Uriarte A, Díaz Martín F (2004) Topology preservation in SOM. Int J Appl Math Comput Sci 1(1)

  27. Vesanto J, Alhoniemi E (2000) Clustering of the self-organizing map. IEEE Trans Neural Netw 11(3)586–600

    Google Scholar 

  28. Vesanto J, Alhoniemi E, Himberg J, Kiviluoto K, Parviainen J (1999) Self-organizing map for data mining in MATLAB: the SOM toolbox. Simulation News Eur 25:54

    Google Scholar 

  29. Wang J, Delabie J, Aasheim HC, Smeland E, Myklebost O (2002) Clustering of the SOM easily reveals distinct gene expression patterns: results of a reanalysis of lymphoma study. BMC Bioinf 3:36

    Google Scholar 

  30. World Health Organization (1997) Dengue haemorrhagic fever: diagnosis, treatment, prevention and control, 2nd ed. WHO, Geneva

  31. Xuan CTP et al (2004) Clinical diagnosis and assessment of severity of confirmed dengue infection in Vietnamese: is the world health classification system helpful? Am J Trop Med Hyg 70(2):172–179

    Google Scholar 

Download references

Acknowledgement

This work is financially supported by a Malaysian Ministry of Science Technology and Innovation (MOSTI) Science Fund Project No. 11-02-03-1014 and postgraduate research Fund (PPP) No. PS138-2008B, University of Malaya.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fatimah Ibrahim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Faisal, T., Taib, M.N. & Ibrahim, F. Reexamination of risk criteria in dengue patients using the self-organizing map. Med Biol Eng Comput 48, 293–301 (2010). https://doi.org/10.1007/s11517-009-0561-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-009-0561-x

Keywords

Navigation