Skip to main content
Log in

Ataxin active site determination using spectral distribution of electron ion interaction potentials of amino acids

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

Ataxia is a genetic neurological disorder characterised by a neurodegenerative process affecting a motor cortex responsible for balance and coordination. Recently several genes that cause autosomal dominant ataxia development were identified. These abnormal genes share a common ability to produce abnormal ataxin proteins that can affect nerve cells in the cerebellum and spinal cord. Here, using the Resonant Recognition Model (RRM) based on signal processing, we analysed ataxin proteins and identified the characteristic features corresponding to their biological activities. The RRM is a physico-mathematical model developed for analysis of protein interactions. By incorporating Smoothed Pseudo Wigner–Ville distribution (SPWV) in the RRM, we can define the active regions along the protein molecule. The results showed that our computational predictions correspond closely with the experimentally identified locations of the active/binding sites for ataxin-1 and ataxin-3 protein groups. The results obtained provide a valuable insight into the functional performance of ataxin proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Bird TD (2005) MD Hereditary Ataxia Overview. GeneReviews

  2. Boashash B (2005) Time-frequency signal analysis and processing. Prentice Hall PTR, Englewood Cliffs

    Google Scholar 

  3. Burnett B, Li F, Pittman RN (2003) The polyglutamine neurodegenerative protein ataxin-3 binds polyubiquitylated proteins and has ubiquitin protease activity. Hum Mol Genet 12(23):3195–3205

    Article  Google Scholar 

  4. Chai Y, Koppenhafer SL, Shoesmitth SJ et al (1999) Evidence for proteasome involvement in polyglutamine disease: localization to nuclear inclusions in SCA3/MJD and suppression of polygutamine aggregation in vitro. Hum Mol Genet 8:673–682

    Article  Google Scholar 

  5. Ciblis P, Cosic I (1997) The possibility of soliton/exciton transfer in proteins. J Theor Biol 184:331–338

    Article  Google Scholar 

  6. Cosic I (1994) Macromolecular bioactivity: is it resonant interaction between macromolecules?—theory and applications. IEEE Trans Biomed Eng 41:1101–1114

    Article  Google Scholar 

  7. Cosic I (1995) Virtual spectroscopy for fun and profit. Biotechnology 13:236–238

    Article  Google Scholar 

  8. Cosic I (1997) The resonant recognition model of macromolecular activity. Birkhauser, Basel

    Google Scholar 

  9. Cosic I (2001) The Resonant Recognition Model of bio-molecular interactions: possibility of electromagnetic resonance. Pol J Med Phys Eng 7(1):73–87

    Google Scholar 

  10. Cosic I, Nesic D, Pavlovic M et al (1986) Enhancer binding proteins predicted by informational spectrum method. Biochem Biophys Res Commun 141(2):831–838

    Article  Google Scholar 

  11. Cosic I, Drummond AE, Underwood JR et al (1994) A new approach to growth factor analogue design: modelling of FGF analogues. Mol Cell Biochem 130:1–9

    Article  Google Scholar 

  12. Cummings CJ, Mancini MA, Antalffy B et al (1998) Chaperone suppression of aggregation and altered subcellular proteasome localization imply protein misfolding in SCA1. Nat Genet 19:148–154

    Article  Google Scholar 

  13. Davidson JD, Riley B, Burright EN et al (2000) Identification and characterization of an ataxin-1-interacting protein: A1Up, an ubiquitin like nuclear protein. Hum Mol Genet 9(15):2305–2312

    Google Scholar 

  14. De Trad CH, Fang Q, Cosic I (2000) The Resonant Recognition Model (RRM) predicts amino acid residues in highly conservative Regions of the hormone prolactin (PRL). Biophys Chem 84(2):149–157

    Article  Google Scholar 

  15. De Trad CH, Fang Q, Cosic I (2002) Protein sequences comparison based on the wavelet transform approach. Protein Eng 15(3):193–203

    Article  Google Scholar 

  16. Gatchel JR, Zoghbi HY (2005) Diseases of unstable repeat expansion: mechanisms and common principles. Nat Rev Genet 6(10):743–755

    Article  Google Scholar 

  17. Huynh DP, Yang HT, Vakharia H (2003) Expansion of the poly Q repeat in ataxin-2 alters its Golgi localization, disrupts the Golgi complex and causes cell death. Hum Mol Genet 12:1485–1496

    Article  Google Scholar 

  18. Helmlinger D, Hardy S, Sasorith S et al (2004) Ataxin-7 is a subunit of GCN5 histone acetyltransferase-containing complexes. Hum Mol Genet 3(12):1257–1265

    Article  Google Scholar 

  19. Irwin S, Vandelft M, Pinchev D et al (2005) RNA association and nucleocytoplasmic shuttling by ataxin-1. J Cell Sci 118:233–242

    Article  Google Scholar 

  20. Kaytor MD, Byam CE, Tousey SK et al (2005) A cell-based screen for modulators of ataxin-1 phosphorylation. Hum Mol Genet 14(8):1095–1105

    Article  Google Scholar 

  21. Klegeris A, Giasson BI, Zhang H et al (2006) Alpha-synuclein and its disease-causing mutants induce ICAM-1 and IL-6 in human astrocytes and astrocytoma cells. FASEB J 20(12):2000–2008

    Article  Google Scholar 

  22. Koyano S, Iwabuchi K, Yagishita S et al (2002) Paradoxical absence of nuclear inclusion in cerebellar Purkinje cells of hereditary ataxias linked to CAG expansion. J Neurol Neurosurg Psychiatry 73:450–452

    Article  Google Scholar 

  23. Lalovic D, Davidovic DM, Bijedic N (2003) Quantum mechanics in terms of non negative smoothed Wigner functions. Phys Rev A 46:1206–1212

    Article  MathSciNet  Google Scholar 

  24. Li F, Macfarlan T, Pittman RN et al (2002) Ataxin-3 is a histone binding protein with two independent transcriptional corepressor activities. Biol Chem 277(47):45004–45012

    Article  Google Scholar 

  25. Lin X, Antalffy B, Kang D, Orr HT, Zoghbi HY (2000) Polyglutamine expansion downregulates specific neuronal genes before pathologic changes in SCA1. Nat Neurosci 3:157–163

    Article  Google Scholar 

  26. Lunkes A, Mandel JL (1997) Polyglutamines, nuclear inclusions and neurodegeneration. Nat Med 3:1201–1202

    Article  Google Scholar 

  27. Mao Y, Senic-Matuglia F, Di Fiore PP et al (2005) Deubiquitinating function of ataxin-3: insights from the solution structure of the Josephin domain. PNAS 36:12700–12705

    Article  Google Scholar 

  28. Piedras-Renterıa ES, Watase K, Harata N et al (2001) Increased expression of α1A Ca2+ channel currents arising from expanded trinucleotide repeats in spinocerebellar ataxia type 6. J Neurosci 21(23):9185–9193

    Google Scholar 

  29. Pirogova E, Fang Q, Akay M et al (2002) Investigation of the structure and function relationships of oncogene proteins. Proc IEEE 90(12):1859–1867

    Article  Google Scholar 

  30. Pirogova E, Simon GP, Cosic I (2003) Investigation of the applicability of dielectric relaxation properties of amino acid solutions within the Resonant Recognition Model. IEEE Trans Nanobiosci 2(2):63–69

    Article  Google Scholar 

  31. Schols L, Bauer P, Schmidt T et al (2004) Autosomal dominant cerebellar ataxias: clinical features, genetics, and pathogenesis. Lancet Neurol 3:291–304

    Article  Google Scholar 

  32. Shibata H, Huynh DP, Pulst SM (2000) A novel protein with RNA-binding motifs interacts with ataxin-2. Hum Mol Genet 9:1303–1313

    Article  Google Scholar 

  33. Tsai C-C, Kao HY, Mitzutani A et al (2004) Ataxin 1, a SCA1 neurodegenerative disorder protein, is functionally linked to the silencing mediator of retinoid and thyroid hormone receptors. PNAS 101(12):4047–4052

    Article  Google Scholar 

  34. Tsuda H, Jafar-Nejad H, Patel AJ et al (2005) The AXH domain of ataxin-1 mediates neurodegeneration through its interaction with Gfi-1/Senseless proteins. Cell 122(4):633–644

    Article  Google Scholar 

  35. Veljkovic V, Slavic M (1972) General model of pseudopotentials. Phys Rev Lett 29:105–107

    Article  Google Scholar 

  36. Wigner EP (1932) On the quantum correction for thermodynamic equilibrium. Phys Rev 40:749

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Pirogova.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pirogova, E., Vojisavljevic, V., Hernández Cáceres, J.L. et al. Ataxin active site determination using spectral distribution of electron ion interaction potentials of amino acids. Med Biol Eng Comput 48, 303–309 (2010). https://doi.org/10.1007/s11517-010-0587-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-010-0587-0

Keywords

Navigation