Skip to main content

Advertisement

Log in

Finite element analysis of idealised unit cell cancellous structure based on morphological indices of cancellous bone

  • Short Communication
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

Human bones can be categorised into one of two types—the compact cortical and the porous cancellous. Whilst the cortical is a solid structure macroscopically, the structure of cancellous bone is highly complex with plate-like and strut-like structures of various sizes and shapes depending on the anatomical site. Reconstructing the actual structure of cancellous bone for defect filling is highly unfeasible. However, the complex structure can be simplified into an idealised structure with similar properties. In this study, two idealised architectures were developed based on morphological indices of cancellous bone: the tetrakaidecahedral and the prismatic. The two architectures were further subdivided into two types of microstructure, the first consists of struts only and the second consists of a combination of plates and struts. The microstructures were transformed into finite element models and displacement boundary condition was applied to all four idealised cancellous models with periodic boundary conditions. Eight unit cells extracted from the actual cancellous bone obtained from micro-computed tomography were also analysed with the same boundary conditions. Young’s modulus values were calculated and comparison was made between the idealised and real cancellous structures. Results showed that all models with a combination of plates and struts have higher rigidity compared to the one with struts only. Values of Young’s modulus from eight unit cells of cancellous bone varied from 42 to 479 MPa with an average of 234 MPa. The prismatic architecture with plates and rods closely resemble the average stiffness of a unit cell of cancellous bone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Burgers TA, Mason J, Niebur G, Ploeg HL (2008) Compressive properties of trabecular bone in the distal femur. J Biomech 41:1077

    Article  Google Scholar 

  2. Burla RK, Kumar AV, Sankar BV (2009) Implicit boundary method for determination of effective properties of composite microstructures. Int J Solids Struct 46:2514

    Article  Google Scholar 

  3. Carter DR, Hayes WC (1977) The compressive behavior of bone as a two-phase porous structure. J Bone Joint Surg 59A:954

    Google Scholar 

  4. Cowin SC (1985) The relationship between the elasticity tensor and the fabric tensor. Mech Meter 4:137

    Article  Google Scholar 

  5. Dagan D, Be’ery M, Gefen A (2004) Single-trabecula building block for large-scale finite element models of cancellous bone. Med Biol Eng Comput 42:549

    Article  Google Scholar 

  6. Diamant I, Shahar R, Gefen A (2005) How to select the elastic modulus for cancellous bone in patient-specific continuum models of the spine. Med Biol Eng Comput 43:465

    Article  Google Scholar 

  7. Diamant I, Shahar R, Masharawi Y, Gefen A (2007) A method for patient-specific evaluation of vertebral cancellous bone strength: in vitro validation. Clin Biomech 22:282

    Article  Google Scholar 

  8. Eswaran SK, Bayraktar HH, Adams MF, Gupta A, Hoffmann PF, Lee DC, Papadopoulos P, Keaveny TM (2007) The micro-mechanics of cortical shell removal in the human vertebral body. Comput Methods Appl Mech Eng 196:3025

    Article  MATH  Google Scholar 

  9. Eswaran SK, Allen MR, Burr DB, Keaveny TM (2007) A computational assessment of the independent contribution of changes in canine trabecular bone volume fraction and microarchitecture to increased bone strength with suppression of bone turnover. J Biomech 40:3424

    Article  Google Scholar 

  10. Feldkamp LA, Goldstein SA, Parfitt AM (1989) The direct examination of three-dimensional bone architecture in vitro by computed tomography. J Bone Miner Res 4:3

    Article  Google Scholar 

  11. Gibson LJ (1985) The mechanical behaviour of cancellous bone. J Biomech 18:317

    Article  Google Scholar 

  12. Guo XE, Kim CH (2002) Mechanical consequence of trabecular bone loss and its treatment: a three-dimensional model simulation. Bone 30:404

    Article  Google Scholar 

  13. Hildebrand T, Laib A, Müller R, Dequeker J, Rügsegger P (1999) Direct three-dimensional morphometric analysis of human cancellous bone: microstructural data from spine, femur, iliac crest, and calcaneus. J Bone Miner Res 14:1167

    Article  Google Scholar 

  14. Hollister SJ, Fyhrie DP, Jepsen KJ (1991) Application of homogenization theory to the study of trabecular bone mechanics. J Biomech 24:825

    Article  Google Scholar 

  15. Hollister SJ, Brennan JM, Kikuchi NA (1994) A homogenization procedure for calculating trabecular bone effective stiffness and tissue level stress. J Biomech 27:433

    Article  Google Scholar 

  16. Homminga J, McCreadie BR, Ciarelli TE, Weinans H, Goldstein SA, Huiskes R (2002) Cancellous bone mechanical properties from normals and patients with hip fractures differ on the structure level, not on the bone hard tissue level. Bone 30:759

    Article  Google Scholar 

  17. Homminga J, McCreadie BR, Weinans H, Huiskes R (2003) The dependence of the elastic properties of osteoporotic cancellous bone on volume fraction and fabric. J Biomech 36:1461

    Article  Google Scholar 

  18. Jacobs CR, Davis BR, Rieger CJ, Francis JJ, Saad M, Fyhrie DP (1999) The impact of boundary conditions and mesh size on the accuracy of cancellous bone tissue modulus determination using large-scale finite-element modeling. J Biomech 32:1159

    Article  Google Scholar 

  19. Kosmopoulos V, Keller TS (2008) Predicting trabecular bone microdamage initiation and accumulation using a non-linear perfect damage model. Med Eng Phys 30:725

    Article  Google Scholar 

  20. Kosmopoulos V, Schizas C, Keller TS (2008) Modeling the onset and propagation of trabecular bone microdamage during low-cycle fatigue. J Biomech 41:515

    Article  Google Scholar 

  21. Kowalczyk P (2003) Elastic properties of cancellous bone derived from finite element models of parameterized microstructure cells. J Biomech 36:961

    Article  Google Scholar 

  22. Ladd AJC, Kinney JH (1998) Numerical errors and uncertainties in finite-element modeling of trabecular bone. J Biomech 31:941

    Article  Google Scholar 

  23. Majumdar S, Kothari M, Augat P, Newitt DC, Link TM, Lin JC, Lang T, Lu Y, Genant HK (1998) High-resolution magnetic resonance imaging: three-dimensional trabecular bone architecture and biomechanical properties. Bone 22:445

    Article  Google Scholar 

  24. Morgan EF, Keaveny TM (2001) Dependence of yield strain of human trabecular bone on anatomic site. J Biomech 34:569

    Article  Google Scholar 

  25. Morgan EF, Bayraktar HH, Keaveny TM (2003) Trabecular bone modulus-density relationships depend on anatomic site. J Biomech 36:897

    Article  Google Scholar 

  26. Morgan EF, Bayraktar HH, Yeh OC, Majumdar S, Burghardt A, Keaveny TM (2004) Contribution of inter-site variations in architecture to trabecular bone apparent yield strains. J Biomech 37:1413

    Article  Google Scholar 

  27. Müller R, Rügsegger P (1995) Three-dimensional finite element modelling of non-invasively assessed trabecular bone structures. Med Eng Phys 17:126

    Article  Google Scholar 

  28. Nicholson PHF, Strelitzki R (1999) On the prediction of Young’s modulus in calcaneal cancellous bone by ultrasonic bulk and bar velocity measurements. Clin Rheumatol 18:10

    Article  Google Scholar 

  29. Niebur GL, Feldstein MJ, Yuen JC, Chen TJ, Keaveny TM (2000) High-resolution finite element models with tissue strength asymmetry accurately predict failure of trabecular bone. J Biomech 33:1575

    Article  Google Scholar 

  30. Öchsner A, Mishuris G (2009) Modelling of the multiaxial elasto-plastic behaviour of porous metals with internal gas pressure. Finite Elem Anal Des 45:104

    Article  Google Scholar 

  31. Odgaard A (1997) Three-dimensional methods for quantification of cancellous bone architecture. Bone 20:315

    Article  Google Scholar 

  32. Odgaard A, Linde F (1989) A direct method for fast three-dimensional serial reconstruction. J Microsc 159:335

    Google Scholar 

  33. Rietbergen BV, Odgaard A, Kabel J, Huiskes R (1998) Relationships between bone morphology and bone elastic properties can be accurately quantified using high-resolution computer reconstructions. J Orthop Res 16:23

    Article  Google Scholar 

  34. Rincón-Kohli L, Zysset P (2009) Multi-axial mechanical properties of human trabecular bone. Biomech Model Mechanobiol 8:195

    Article  Google Scholar 

  35. Rüegsegger P, Koller B, Müller R (1996) A microtopographic system for the nondestructive evaluation of bone architecture. Calcif Tissue Int 58:24

    Article  Google Scholar 

  36. Schoenfeld C, Lautenschlager E, Meyer P (1974) Mechanical properties of human cancellous bone in the femoral head. Med Biol Eng Comput 12:313

    Google Scholar 

  37. Shefelbine SJ, Augat P, Claes L, Simon U (2005) Trabecular bone fracture healing simulation with finite element analysis and fuzzy logic. J Biomech 38:2440

    Article  Google Scholar 

  38. Shim VPW, Yang LM, Liu JF, Lee VS (2005) Characterisation of the dynamic compressive mechanical properties of cancellous bone from the human cervical spine. Int J Impact Eng 32:525

    Article  Google Scholar 

  39. Silva MJ, Gibson LJ (1997) Modeling the mechanical behavior of vertebral trabecular bone: effects of age-related changes in microstructure. Bone 21:191

    Article  Google Scholar 

  40. Stolken JS, Kinney JH (2003) On the importance of geometric nonlinearity in finite-element simulations of trabecular bone failure. Bone 33:494

    Article  Google Scholar 

  41. Taylor M, Cotton J, Zioupos P (2002) Finite element simulation of the fatigue behaviour of cancellous bone*. Meccanica 37:419

    Article  MATH  Google Scholar 

  42. Tsubota K, Adachi T (2005) Spatial and temporal regulation of cancellous bone structure: characterization of a rate equation of trabecular surface remodeling. Med Eng Phys 27:305

    Article  Google Scholar 

  43. Tsubota K, Adachi T, Tomita Y (2002) Functional adaptation of cancellous bone in human proximal femur predicted by trabecular surface remodeling simulation toward uniform stress state. J Biomech 35:1541

    Article  Google Scholar 

  44. Turner C, Cowin SC, Rho JY, Ashman RB, Rice JC (1990) The fabric dependence of the orthotropic elastic constants of cancellous bone. J Biomech 23:549

    Article  Google Scholar 

  45. Ulrich D, van Rietbergen B, Weinans H, Rügsegger P (1998) Finite element analysis of trabecular bone structure: a comparison of image-based meshing techniques. J Biomech 31:1187

    Article  Google Scholar 

  46. Ulrich D, van Rietbergen B, Laib A, Rügsegger P (1999) The ability of three-dimensional structural indices to reflect mechanical aspects of trabecular bone. Bone 25:55

    Article  Google Scholar 

  47. van der Linden JC, Birkenhager-Frenkel DH, Verhaar JAN, Weinans H (2001) Trabecular bone’s mechanical properties are affected by its non-uniform mineral distribution. J Biomech 34:1573

    Article  Google Scholar 

  48. van Lenthe GH, Huiskes R (2002) How morphology predicts mechanical properties of trabecular structures depends on intra-specimen trabecular thickness variations. J Biomech 35:1191

    Article  Google Scholar 

  49. van Lenthe GH, Stauber M, Müller R (2006) Specimen-specific beam models for fast and accurate prediction of human trabecular bone mechanical properties. Bone 39:1182

    Article  Google Scholar 

  50. van Ruijven LJ, Mulder L, van Eijden TMGJ (2007) Variations in mineralization affect the stress and strain distributions in cortical and trabecular bone. J Biomech 40:1211

    Article  Google Scholar 

  51. Williams JL, Lewis JL (1982) Properties and an anisotropic model of cancellous bone from proximal tibial epiphysis. J Biomech Eng 104:50

    Article  Google Scholar 

  52. Yeh OC, Keaveny TM (1999) Biomechanical effects of intraspecimen variations in trabecular architecture: a three-dimensional finite element study. Bone 25:223

    Article  Google Scholar 

Download references

Acknowledgements

This project was sponsored by the Ministry of Science, Technology and Innovation, Malaysia. The authors would also like to thank the Research Management Centre, Universiti Teknologi Malaysia, for managing the project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammed Rafiq Abdul Kadir.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kadir, M.R.A., Syahrom, A. & Öchsner, A. Finite element analysis of idealised unit cell cancellous structure based on morphological indices of cancellous bone. Med Biol Eng Comput 48, 497–505 (2010). https://doi.org/10.1007/s11517-010-0593-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-010-0593-2

Keywords

Navigation