Skip to main content
Log in

A fuzzy-based growth model with principle component analysis selection for carpal bone-age assessment

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

There are two well-known methods to assess bone age, the Greulich–Pyle method and the Tanner–Whitehouse method, which both utilize the hand radiogram to make bone-age assessment to assist medical doctors to identify the growth status of children. Basically, the morphology of bones could be evaluated to quantitatively describe the maturity. The study extracted the morphology of carpal bones and applied the fuzzy theory with principle component analysis to estimate the maturity of skeleton. Five geometric features of the carpals were extracted including the bone area, the area ratio, and the bone contour of the carpals. In order to analyze these features, the principle component analysis and the statistical correlation combined with three different types of procedure were used to construct a growth model of carpals. Eventually, the results of the three types of procedure with fuzzy rules can construct a bone-age assessment system to identify the maturity of children. The study shows that the proposed model based on fuzzy rule has an accuracy rate above 89% in Type-I and II, and above 87% in Type-III within a tolerance of 1.5 years.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Cao F, Huang HK, Pietka E et al (2000) Digital hand atlas and web-based bone age assessment: system design and implementation. Comput Med Imaging Graph 24:297–307

    Article  CAS  PubMed  Google Scholar 

  2. Fan BC, Hsieh CW, Jong TL et al (2001) Automatic bone age estimation based on carpal-bone image: a preliminary report. Zhonghua Yi Xue Za Zhi (Taipei) 64:203–208

    CAS  Google Scholar 

  3. Greulich WW, Pyle SI (1959) Radiographic Atlas of skeletal development of the hand and wrist. Stanford University Press, Stanford, CA

    Google Scholar 

  4. Hsieh CW, Chu BC, Jong TL et al (2005) Bone age classification using fuzzy concept with support vector machine neural network. In: ICBME 2005, 12th International Conference on Biomedical Engineering, Singapore, 1A4-05

  5. Hsieh CW, Huang MJ, Jong TL (2006) Growth evaluation based on morphological description of carpals. In: IFMBE Proceedings, World Congress on Medical Physics and Biomedical Engineering 2006, August 27–September 1, 2006 COEX Seoul, Korea, pp 2328–2330

  6. Hsieh CW, Jong TL, Chou YH et al (2007) Computerized geometric features of carpal bone for bone age estimation. Chin Med J (Engl) 120:767–770

    Google Scholar 

  7. Hsieh CW, Jong TL, Tiu CM (2007) Bone age estimation based on phalanx information with fuzzy constrain of carpals. Med Biol Eng Comput 45:283–295

    Article  PubMed  Google Scholar 

  8. Hsieh CW, Jong TL, Tiu CM (2008) Carpal growth assessment based on fuzzy description. In: IEEE Conference on Soft Computing in Industrial Applications, Muroran, Hokkaido, Japan, pp 355–358

  9. Liu J, Qi J, Liu Z et al (2008) Automatic bone age assessment based on intelligent algorithms and comparison with TW3 method. Comput Med Imaging Graph 32:678–684

    Article  PubMed  Google Scholar 

  10. Da Silva AMM, Olabarriaga SD, Dietrich CA et al (2001) On determining a signature for skeletal maturity. In: Proceedings of the XIV Brazilian Symposium on Computer Graphics and Image Processing table of contents, IEEE Computer Society, Washington, DC, USA, pp 246–51

  11. Michael DJ, Nelson AC (1989) HANDX: a model-based system for automatic segmentation of bones from digital hand radiographs. IEEE Trans Med Imaging 8:64–69

    Article  CAS  PubMed  Google Scholar 

  12. Milner GR, Levick RK, Kay R (1986) Assessment of bone age: a comparison of the Greulich and Pyle, and the Tanner and Whitehouse methods. Clin Radiol 37:119–121

    Article  CAS  PubMed  Google Scholar 

  13. Pietka E (1995) Computer-assisted bone age assessment based on features automatically extracted from a hand radiograph. Comput Med Imaging Graph 19:251–259

    Article  CAS  PubMed  Google Scholar 

  14. Pietka E, Huang HK (1995) Epiphyseal fusion assessment based on wavelets decomposition analysis. Comput Med Imaging Graph 19:465–472

    Article  CAS  PubMed  Google Scholar 

  15. Pietka E, McNitt-Gray MF, Kuo ML et al (1991) Computer-assisted phalangeal analysis in skeletal age assessment. IEEE Trans Med Imaging 10:616–620

    Article  CAS  PubMed  Google Scholar 

  16. Pietka E, Kaabi L, Kuo ML et al (1993) Feature extraction in carpal-bone analysis. IEEE Trans Med Imaging 12:44–49

    Article  CAS  PubMed  Google Scholar 

  17. Pietka E, Gertych A, Pospiech S et al (2001) Computer-assisted bone age assessment: image preprocessing and epiphyseal/metaphyseal ROI extraction. IEEE Trans Med Imaging 20:715–729

    Article  CAS  PubMed  Google Scholar 

  18. Pietka E, Gertych A, Pospiecha Euro Kurkowska S et al (2004) Computer-assisted bone age assessment: graphical user interface for image processing and comparison. J Digit Imaging 17:175–188

    Article  PubMed  Google Scholar 

  19. Tanner JM, Landt KW, Cameron N et al (1983) Prediction of adult height from height and bone age in childhood. A new system of equations (TW Mark II) based on a sample including very tall and very short children. Arch Dis Child 58:767–776

    Article  CAS  PubMed  Google Scholar 

  20. Thodberg HH, Kreiborg S, Juul A et al (2009) The BoneXpert method for automated determination of skeletal maturity. IEEE Trans Med Imaging 28:52–66

    Article  PubMed  Google Scholar 

  21. Tiu CM, Liu TC, Hsieh CW et al (2009) Turner syndrome phalangeal screening based on a two-stage linear regression concept. Pediatr Int 51:453–459

    Article  PubMed  Google Scholar 

  22. Tristan A, Arribas JI (2005) A radius and ulna skeletal age assessment system. In: IEEE Workshop on Machine Learning for Signal Processing, Mystic, CT, pp 221–226

  23. Tristan-Vega A, Arribas JI (2008) A radius and ulna TW3 bone age assessment system. IEEE Trans Biomed Eng 55:1463–1476

    Article  PubMed  Google Scholar 

  24. Zadeh LA (1965) Fuzzy sets. Inf Control 8:338–353

    Article  Google Scholar 

  25. Zhang A, Gertych A, Liu BJ (2007) Automatic bone age assessment for young children from newborn to 7-year-old using carpal bones. Comput Med Imaging Graph 31:299–310

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chi-Wen Hsieh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hsieh, CW., Liu, TC., Jong, TL. et al. A fuzzy-based growth model with principle component analysis selection for carpal bone-age assessment. Med Biol Eng Comput 48, 579–588 (2010). https://doi.org/10.1007/s11517-010-0609-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-010-0609-y

Keywords

Navigation