Skip to main content

Advertisement

Log in

Microfluidics for cell separation

  • Special Issue - Review
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

The need for efficient cell separation, an essential preparatory step in many biological and medical assays, has led to the recent development of numerous microscale separation techniques. This review describes the current state-of-the-art in microfluidics-based cell separation techniques. Microfluidics-based sorting offers numerous advantages, including reducing sample volumes, faster sample processing, high sensitivity and spatial resolution, low device cost, and increased portability. The techniques presented are broadly classified as being active or passive depending on the operating principles. The various separation principles are explained in detail along with popular examples demonstrating their application toward cell separation. Common separation metrics, including separation markers, resolution, efficiency, and throughput, of these techniques are discussed. Developing efficient microscale separation methods that offering greater control over cell population distribution will be important in realizing true point-of-care (POC) lab-on-a-chip (LOC) systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Akagi T, Ichiki T (2008) Cell electrophoresis on a chip: what can we know from the changes in electrophoretic mobility? Anal Bioanal Chem 391:2433–2441

    Article  PubMed  CAS  Google Scholar 

  2. Akagi T, Suzuki M, Ichiki T (2006) Application of on-chip electrophoresis of cell to evaluation of cell cycle stages of HL-60 cells. Jpn J Appl Phys Part II Lett 45:L1106–L1109

    Article  CAS  Google Scholar 

  3. Ambrose EJ, James AM, Lowick JHB (1956) Differences between the electrical charge carried by normal and homologous tumour cells. Nature 177:576–577

    Article  PubMed  Google Scholar 

  4. Andersson H, van den Berg A (2003) Microfluidic devices for cellomics: a review. Sens Actuators B Chem 92(3):315–325

    Article  CAS  Google Scholar 

  5. Ashcoroft RG, Lopez PA (2000) Commercial high speed machines open new opportunities in high throughput flow cytometry. J Immunol Methods 243:13–24

    Article  Google Scholar 

  6. Baret JC et al (2009) Fluorescence-activated droplet sorting (FADS): efficient microfluidic cell sorting based on enzymatic activity. Lab Chip 9(13):1850–1858

    Article  PubMed  CAS  Google Scholar 

  7. Becker FF et al (1995) Separation of human breast cancer cells from blood by differential dielectric affinity. Proc Natl Acad Sci 92:860–864

    Article  PubMed  CAS  Google Scholar 

  8. Beebe DJ, Mensing GA, Walker GM (2002) Physics and applications of microfluidics in biology. Annu Rev Biomed Eng 4:261–286

    Article  PubMed  CAS  Google Scholar 

  9. Berger M et al (2001) Design of a microfabricated magnetic cell separator. Electrophoresis 22:3883–3892

    Article  PubMed  CAS  Google Scholar 

  10. Bernard A, Michel B, Delamarche E (2001) Micromosaic immunoassays. Anal Chem 73(1):8–12

    Article  PubMed  CAS  Google Scholar 

  11. Bonetta L (2005) Flow cytometry smaller and better. Nature Methods 2:785–795

    Article  CAS  Google Scholar 

  12. Brent TP, Forrester JA (1967) Changes in surface charge of HeLa cells during the cell cycle. Nature 215:92–93

    Article  PubMed  CAS  Google Scholar 

  13. Chen C et al (2003) Design and operation of a microfluidic sorter for Drosophila embryos. Sens Acuators B 102:59–66

    Article  CAS  Google Scholar 

  14. Chen X et al (2008) Microfluidic chip for blood cell separation and collection based on crossflow filtration. Sens Actuators B Chem 130(1):216–221

    Article  CAS  Google Scholar 

  15. Cheng J et al (1998) Preparation and hybridization analysis of DNA/RNA from E. coli on microfabricated bioelectronic chips. Nat Biotechnol 16:541–546

    Article  PubMed  CAS  Google Scholar 

  16. Cheng J et al (1998) Isolation of cultured cervical carcinoma cells mixed with peripheral blood cells on a bioelectronic chip. Anal Chem 70:2321–2326

    Article  PubMed  CAS  Google Scholar 

  17. Cheng XH et al (2007) A microfluidic device for practical label-free CD4 + T cell counting of HIV-infected subjects. Lab Chip 7(2):170–178

    Article  PubMed  CAS  Google Scholar 

  18. Chin CD, Linder V, Sia SK (2007) Lab-on-a-chip devices for global health: past studies and future opportunities. Lab Chip 7(1):41–57

    Article  PubMed  CAS  Google Scholar 

  19. Chiou PY, Ohta AT, Wu MC (2005) Massively parallel manipulation of single cells and microparticles using optical images. Nature 436:370–372

    Article  PubMed  CAS  Google Scholar 

  20. Cho BS et al (2003) Passively driven integrated microfluidic system for separation of motile sperm. Anal Chem 75(7):1671–1675

    Article  PubMed  CAS  Google Scholar 

  21. Choi S, Park JK (2007) Continuous hydrophoretic separation and sizing of microparticles using slanted obstacles in a microchannel. Lab Chip 7(7):890–897

    Article  PubMed  CAS  Google Scholar 

  22. Choi S et al (2007) Continuous blood cell separation by hydrophoretic filtration. Lab Chip 7(11):1532–1538

    Article  PubMed  CAS  Google Scholar 

  23. Colter DC, Sekiya I, Prockop DJ (2001) Identification of a subpopulation of rapidly self-renewing and multipotential adult stem cells in colonies of human marrow stromal cells. Proc Natl Acad Sci USA 98(14):7841–7845

    Article  PubMed  CAS  Google Scholar 

  24. David R, Groebner M, Franz WM (2005) Magnetic cell sorting purification of differentiated embryonic stem cells stably expressing truncated human CD4 as surface marker. Stem Cells 23(4):477–482

    Article  PubMed  CAS  Google Scholar 

  25. Davis JA et al (2006) Deterministic hydrodynamics: taking blood apart. Proc Natl Acad Sci USA 103(40):14779–14784

    Article  PubMed  CAS  Google Scholar 

  26. Di Carlo D (2009) Inertial microfluidics. Lab Chip 9(21):3038–3046

    Article  PubMed  CAS  Google Scholar 

  27. Di Carlo D et al (2007) Continuous inertial focusing, ordering, and separation of particles in microchannels. Proc Natl Acad Sci USA 104(48):18892–18897

    Article  PubMed  CAS  Google Scholar 

  28. Di Carlo D et al (2008) Equilibrium separation and filtration of particles using differential inertial focusing. Anal Chem 80(6):2204–2211

    Article  PubMed  CAS  Google Scholar 

  29. Dittrich PS, Manz A (2006) Lab-on-a-chip: microfluidics in drug discovery. Nat Rev Drug Discov 5(3):210–218

    Article  PubMed  CAS  Google Scholar 

  30. Doh I, Cho YH (2005) A continuous cell separation chip using hydrodynamic dielectrophoresis (DEP) process. Sens Actuators A Phys 121(1):59–65

    Article  CAS  Google Scholar 

  31. Eijkel JCT, van den Berg A (2006) Nanotechnology for membranes, filters and sieves. Lab Chip 6(1):19–23

    Article  PubMed  CAS  Google Scholar 

  32. Evander M et al (2007) Noninvasive acoustic cell trapping in a microfluidic perfusion system for online bioassays. Anal Chem 79(7):2984–2991

    Article  PubMed  CAS  Google Scholar 

  33. Faivre M et al (2006) Geometrical focusing of cells in a microfluidic device: an approach to separate blood plasma. Biorheology 43(2):147–159

    PubMed  Google Scholar 

  34. Fu AY et al (1999) A microfabricated fluorescence-activated cell sorter. Nat Biotechnol 17:1109–1111

    Article  PubMed  CAS  Google Scholar 

  35. Furdui VI, Harrison DJ (2004) Immunomagnetic T cell capture from blood for PCR analysis using microfluidic systems. Lab Chip 4(6):614–618

    Article  PubMed  CAS  Google Scholar 

  36. Gardeniers JGE, van den Berg A (2004) Lab-on-a-chip systems for biomedical and environmental monitoring. Anal Bioanal Chem 378(7):1700–1703

    Article  PubMed  CAS  Google Scholar 

  37. Gascoyne P et al (2002) Microsample preparation by dielectrophoresis: isolation of malaria. Lab Chip 2(2):70–75

    Article  PubMed  CAS  Google Scholar 

  38. Gascoyne P, Satayavivad J, Ruchirawat M (2004) Microfluidic approaches to malaria detection. Acta Tropica 89(3):357–369

    Article  PubMed  Google Scholar 

  39. Goldsmith HL, Cokelet GR, Gaehtgens P (1989) Robin Fahraeus: evolution of his concepts in cardiovascular physiology. Am J Physiol 257(3):H1005–H1015

    PubMed  CAS  Google Scholar 

  40. Grodzinski P et al (2003) A modular microfluidic system for cell pre-concentration and genetic sample preparation. Biomed Microdevices 5(4):303–310

    Article  CAS  Google Scholar 

  41. Guck J et al (2005) Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence. Biophys J 88:3689–3698

    Article  PubMed  CAS  Google Scholar 

  42. Han KH, Frazier AB (2006) Paramagnetic capture mode magnetophoretic microseparator for high efficiency blood cell separations. Lab Chip 6(2):265–273

    Article  PubMed  CAS  Google Scholar 

  43. Hannig K (1982) New aspects in preparative and analytical continuous free-flow Cell electrophoresis. Electrophoresis 3:235–243

    Article  CAS  Google Scholar 

  44. Hansen E, Hannig K (1984) Electrophoretic separation of lymphoid cells. Methods Enzymol 108:180–197

    Article  PubMed  CAS  Google Scholar 

  45. Hedlund E et al (2007) Selection of embryonic stem cell-derived enhanced green fluorescent protein-positive dopamine neurons using the tyrosine hydroxylase promoter is confounded by reporter gene expression in immature cell populations. Stem Cells 25(5):1126–1135

    Article  PubMed  CAS  Google Scholar 

  46. Hoffmann W et al (1981) Cell electrophoresis for diagnostic purposes. I. Diagnostic value of the electrophoretic mobility test (EMT) for the detection of gynaecological malignancies. J Cancer 43(5):588–597

    CAS  Google Scholar 

  47. Hu X et al (2005) Marker-specific sorting of rare cells using dielectrophoresis. Proc Natl Acad Sci 104(44):15757–15761

    Article  CAS  Google Scholar 

  48. Huang Y et al (2002) Dielectrophoretic cell separation and gene expression profiling on microelectronic chip arrays. Anal Chem 74:3362–3371

    Article  PubMed  CAS  Google Scholar 

  49. Huang LR et al (2004) Continuous particle separation through deterministic lateral displacement. Science 304(5673):987–990

    Article  PubMed  CAS  Google Scholar 

  50. Huang R et al (2008) A microfluidics approach for the isolation of nucleated red blood cells (NRBCs) from the peripheral blood of pregnant women. Prenat Diagn 28(10):892–899

    Article  PubMed  CAS  Google Scholar 

  51. Hymer W et al (1987) Continuous flow electrophoretic separation of proteins and cells from mammalian tissues. Cell Biochem Biophys 10(1):61–85

    CAS  Google Scholar 

  52. Ibrahim S, van den Engh G (2003) High-speed cell sorting: fundamentals and recent advances. Curr Opin 14:5–12

    CAS  Google Scholar 

  53. Inglis DW et al (2004) Continuous microfluidic immunomagnetic cell separation. Appl Phys Lett 85(21):5093–5095

    Article  CAS  Google Scholar 

  54. Jaggi RD, Sandoz R, Effenhauser CS (2007) Microfluidic depletion of red blood cells from whole blood in high-aspect-ratio microchannels. Microfluid Nanofluid 3(1):47–53

    Article  Google Scholar 

  55. Jain A, Munn LL (2009) Determinants of leukocyte margination in rectangular microchannels. PLoS ONE 4(9):e7104

    Article  PubMed  CAS  Google Scholar 

  56. Johansson L et al (2009) On-chip fluorescence-activated cell sorting by an integrated miniaturized ultrasonic transducer. Anal Chem 81(13):5188–5196

    Article  PubMed  CAS  Google Scholar 

  57. Jones EA et al (2002) Isolation and characterization of bone marrow multipotential mesenchymal progenitor cells. Arthritis Rheum 46(12):3349–3360

    Article  PubMed  Google Scholar 

  58. Karnik R et al (2008) Nanomechanical control of cell rolling in two dimensions through surface Patterning of receptors. Nano Lett 8(4):1153–1158

    Article  PubMed  CAS  Google Scholar 

  59. Kersaudy-Kerhoas M, Dhariwal R, Desmulliez MPY (2008) Recent advances in microparticle continuous separation. IET Nanobiotechnol 2(1):1–13

    Article  PubMed  CAS  Google Scholar 

  60. Korecka JA, Verhaagen J, Hol EM (2007) Cell-replacement and gene-therapy strategies for Parkinson’s and Alzheimer’s disease. Regen Med 2(4):425–446

    Article  PubMed  CAS  Google Scholar 

  61. Krivacic RT et al (2004) A rare-cell detector for cancer. Proc Natl Acad Sci 101(29):10501–10504

    Article  PubMed  CAS  Google Scholar 

  62. Kruger J et al (2002) Development of a microfluidic device for fluorescence activated cell sorting. J Micromech Microeng 12:486–494

    Article  Google Scholar 

  63. Kulrattanarak T et al (2008) Classification and evaluation of microfluidic devices for continuous suspension fractionation. Adv Colloid Interface Sci 142(1–2):53–66

    Article  PubMed  CAS  Google Scholar 

  64. Kuntaegowdanahalli SS et al (2009) Inertial microfluidics for continuous particle separation in spiral microchannels. Lab Chip 9(20):2973–2980

    Article  PubMed  CAS  Google Scholar 

  65. Larsen AV et al (2008) Pinched flow fractionation devices for detection of single nucleotide polymorphisms. Lab Chip 8(5):818–821

    Article  PubMed  CAS  Google Scholar 

  66. Laser DJ, Santiago JG (2004) A review of micropumps. J Micromech Microeng 14(6):R35–R64

    Article  Google Scholar 

  67. Laurell T, Petersson F, Nilsson A (2007) Chip integrated strategies for acoustic separation and manipulation of cells and particles. Chem Soc Rev 36:492–506

    Article  PubMed  CAS  Google Scholar 

  68. Lee H, Purdon AM, Westervelt RM (2004) Manipulation of biological cells using a microelectromagnet matrix. Appl Phys Lett 85(6):1063–1065

    Article  CAS  Google Scholar 

  69. Love JC et al (2006) A microengraving method for rapid selection of single cells producing antigen-specific antibodies. Nat Biotechnol 24(6):703–707

    Article  PubMed  CAS  Google Scholar 

  70. MacDonald M, Spalding G, Dholakia K (2003) Microfluidic sorting in an optical lattice. Nature 426:401–404

    Article  CAS  Google Scholar 

  71. Maenaka H et al (2008) Continuous and size-dependent sorting of emulsion droplets using hydrodynamics in pinched microchannels. Langmuir 24(8):4405–4410

    Article  PubMed  CAS  Google Scholar 

  72. Makino K et al (1993) Measurements and analyses of electrophoretic mobilities of RAW 117 lymphosarcoma cells and their variant cells. Biophys Chem 47(3):261–265

    Article  PubMed  CAS  Google Scholar 

  73. Mavrou A et al (2007) Identification of nucleated red blood cells in maternal circulation: a second step in screening for fetal aneuploidies and pregnancy complications. Prenat Diagn 27(2):150–153

    Article  PubMed  CAS  Google Scholar 

  74. Mayhew E, O’GRADY EA (1965) Electrophoretic mobilities of tissue culture cells in exponential and parasynchronous growth. Nature 207:86–87

    Article  PubMed  CAS  Google Scholar 

  75. Miltenyi S et al (1990) High gradient magnetic cell separation with MACS. Cytometry 11:231–238

    Article  PubMed  CAS  Google Scholar 

  76. Mitchell P (2001) Microfluidics—downsizing large-scale biology. Nat Biotechnol 19(8):717–721

    Article  PubMed  CAS  Google Scholar 

  77. Mohamed H et al (2009) Isolation of tumor cells using size and deformation. J Chromatogr A 1216(47):8289–8295

    Article  PubMed  CAS  Google Scholar 

  78. Munn LL, Dupin MM (2008) Blood cell interactions and segregation in flow. Ann Biomed Eng 36(4):534–544

    Article  PubMed  Google Scholar 

  79. Murthy SK et al (2004) Effect of flow and surface conditions on human lymphocyte isolation using microfluidic chambers. Langmuir 20(26):11649–11655

    Article  PubMed  CAS  Google Scholar 

  80. Nagrath S et al (2007) Isolation of rare circulating tumour cells in cancer patients by microchip technology. Nature 450(7173):1235-U10

    Google Scholar 

  81. Nguyen NT, Wu ZG (2005) Micromixers—a review. J Micromech Microeng 15(2):R1–R16

    Article  Google Scholar 

  82. Norris JV et al (2009) Acoustic differential extraction for forensic analysis of sexual assault evidence. Anal Chem 81(15):6089–6095

    Article  PubMed  CAS  Google Scholar 

  83. Obrien WA et al (1997) Changes in plasma HIV RNA levels and CD4(+) lymphocyte counts predict both response to antiretroviral therapy and therapeutic failure. Ann Intern Med 126(12):939–945

    CAS  Google Scholar 

  84. Oh KW, Ahn CH (2006) A review of microvalves. J Micromech Microeng 16(5):R13–R39

    Article  Google Scholar 

  85. Pamme N (2007) Continuous flow separations in microfluidic devices. Lab Chip 7(12):1644–1659

    Article  PubMed  CAS  Google Scholar 

  86. Pamme N, Wilhelm C (2006) Continuous sorting of magnetic cells via on-chip free-flow magnetophoresis. Lab Chip 6(8):974–980

    Article  PubMed  CAS  Google Scholar 

  87. Park JS, Song SH, Jung HI (2009) Continuous focusing of microparticles using inertial lift force and vorticity via multi-orifice microfluidic channels. Lab Chip 9(7):939–948

    Article  PubMed  CAS  Google Scholar 

  88. Petersson F et al (2007) Free flow acoustophoresis: microfluidic-based mode of particle and cell separation. Anal Chem 79(14):5117–5123

    Article  PubMed  CAS  Google Scholar 

  89. Petty HR, Ware BR, Wasserman SI (1980) Alterations of the electrophoretic mobility distribution of rat mast cells after immunologic activation. Biophys J 30(1):41–50

    Article  PubMed  CAS  Google Scholar 

  90. Pohl HA (1978) Dielectrophoresis. Cambridge University Press, London

    Google Scholar 

  91. Pries AR, Secomb TW, Gaehtgens P (1996) Biophysical aspects of blood flow in the microvasculature. Cardiovasc Res 32(4):654–667

    PubMed  CAS  Google Scholar 

  92. Radisic M, Iyer RK, Murthy SK (2006) Micro- and nanotechnology in cell separation. Int J Nanomed 1(1):3–14

    Article  CAS  Google Scholar 

  93. Segre G, Silberberg A (1961) Radial particle displacements in poiseuille flow of suspensions. Nature 189:209–210

    Article  Google Scholar 

  94. Sethu P, Sin A, Toner M (2006) Microfluidic diffusive filter for apheresis (leukapheresis). Lab Chip 6(1):83–89

    Article  PubMed  CAS  Google Scholar 

  95. Shevkoplyas SS et al (2005) Biomimetic autoseparation of leukocytes from whole blood in a microfluidic device. Anal Chem 77(3):933–937

    Article  PubMed  CAS  Google Scholar 

  96. Shi JJ et al (2009) Continuous particle separation in a microfluidic channel via standing surface acoustic waves (SSAW). Lab Chip 9(23):3354–3359

    Article  PubMed  CAS  Google Scholar 

  97. Sieuwerts AM et al (2009) Anti-epithelial cell adhesion molecule antibodies and the detection of circulating normal-like breast tumor cells. J Natl Cancer Inst 101(1):61–66

    PubMed  CAS  Google Scholar 

  98. Soper SA et al (2006) Point-of-care biosensor systems for cancer diagnostics/prognostics. Biosens Bioelectron 21(10):1932–1942

    Article  PubMed  CAS  Google Scholar 

  99. Stone HA, Kim S (2001) Microfluidics: basic issues applications, and challenges. Aiche J 47(6):1250–1254

    Article  CAS  Google Scholar 

  100. Takagi J et al (2005) Continuous particle separation in a microchannel having asymmetrically arranged multiple branches. Lab Chip 5(7):778–784

    Article  PubMed  CAS  Google Scholar 

  101. Tan SJ et al (2009) Microdevice for the isolation and enumeration of cancer cells from blood. Biomed Microdevices 11(4):883–892

    Article  PubMed  Google Scholar 

  102. Thiel A, Scheffold A, Radbruch A (1998) Immunomagnetic cell sorting—pushing the limits. Immunotechnology 4:89–96

    Article  PubMed  CAS  Google Scholar 

  103. Todd P et al (1986) Electrophoretic separation and analysis of living cells from solid tissues by several methods: human embryonic kidney cell cultures as a model. J Chromatogr A 364:11–24

    Article  CAS  Google Scholar 

  104. Tsutsui H, Ho CM (2009) Cell separation by non-inertial force fields in microfluidic systems. Mech Res Commun 36(1):92–103

    Article  PubMed  Google Scholar 

  105. Tudos AJ, Besselink GAJ, Schasfoort RBM (2001) Trends in miniaturized total analysis systems for point-of-care testing in clinical chemistry. Lab Chip 1(2):83–95

    Article  PubMed  CAS  Google Scholar 

  106. Vahey MD, Voldman J (2008) An equilibrium method for continuous-flow cell sorting using dielectrophoresis. Anal Chem 80(9):3135–3143

    Article  PubMed  CAS  Google Scholar 

  107. Vahey MD, Voldman J (2009) High-throughput cell and particle characterization using isodielectric separation. Anal Chem 81(7):2446–2455

    Article  PubMed  CAS  Google Scholar 

  108. Voldman J et al (2002) A microfabrication-based dynamic array cytometer. Anal Chem 74:3984–3990

    Article  PubMed  CAS  Google Scholar 

  109. Wang MM et al (2005) Microfluidic sorting of mammalian cells by optical force switching. Nat Biotechnol 23(1):83–87

    Article  PubMed  CAS  Google Scholar 

  110. Whitesides GM (2006) The origins and the future of microfluidics. Nature 442(7101):368–373

    Article  PubMed  CAS  Google Scholar 

  111. Wilding P et al (1998) Integrated cell isolation and polymerase chain reaction analysis using silicon microfilter chambers. Anal Biochem 257(2):95–100

    Article  PubMed  CAS  Google Scholar 

  112. Wu ZG et al (2008) Microfluidic high viability neural cell separation using viscoelastically tuned hydrodynamic spreading. Biomed Microdevices 10(5):631–638

    Article  PubMed  CAS  Google Scholar 

  113. Wu ZG et al (2009) Soft inertial microfluidics for high throughput separation of bacteria from human blood cells. Lab Chip 9(9):1193–1199

    Article  PubMed  CAS  Google Scholar 

  114. Xia N et al (2006) Combined microfluidic-micromagnetic separation of living cells in continuous flow. Biomed Microdevices 8(4):299–308

    Article  PubMed  CAS  Google Scholar 

  115. Yamada M, Seki M (2005) Hydrodynamic filtration for on-chip particle concentration and classification utilizing microfluidics. Lab Chip 5(11):1233–1239

    Article  PubMed  CAS  Google Scholar 

  116. Yamada M, Nakashima M, Seki M (2004) Pinched flow fractionation: continuous size separation of particles utilizing a laminar flow profile in a pinched microchannel. Anal Chem 76(18):5465–5471

    Article  PubMed  CAS  Google Scholar 

  117. Yamada M et al (2007) Microfluidic devices for size-dependent separation of liver cells. Biomed Microdevices 9(5):637–645

    Article  PubMed  Google Scholar 

  118. Yang S, Undar A, Zahn JD (2006) A microfluidic device for continuous, real time blood plasma separation. Lab Chip 6(7):871–880

    Article  PubMed  CAS  Google Scholar 

  119. Zborowski M et al (1995) Analytical magnetapheresis of ferritin-labeled lymphocytes. Anal Chem 67:3702–3712

    Article  PubMed  CAS  Google Scholar 

  120. Zborowski M et al (1999) Continuous cell separation using novel magnetic quadrupole flow sorter. J Magn Magn Mater 194:224–230

    Article  CAS  Google Scholar 

  121. Zborowski M et al (2003) Red blood cell magnetophoresis. Biophys J 84:2638–2645

    Article  PubMed  CAS  Google Scholar 

  122. Zhang ZL et al (2005) In situ bio-functionalization and cell adhesion in microfluidic devices. Microelectron Eng 78-79:556–562

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jongyoon Han or Chwee Teck Lim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bhagat, A.A.S., Bow, H., Hou, H.W. et al. Microfluidics for cell separation. Med Biol Eng Comput 48, 999–1014 (2010). https://doi.org/10.1007/s11517-010-0611-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-010-0611-4

Keywords

Navigation