Skip to main content
Log in

Does femoral strain distribution coincide with the occurrence of cervical versus trochanteric hip fractures? An experimental finite element study

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

The objective of this experimental finite element (FE) study is to test the hypothesis that strain distributions coincide with the occurrence of cervical versus trochanteric hip fractures during loading conditions simulating a sideways fall, and that the cervical versus trochanteric principal strain ratio predicts different fracture patterns. Cadaver femora (female, 83 ± 9 years) were CT scanned and mechanically tested simulating a fall. Thirteen cervical and 13 trochanteric fracture cases were selected for FE analysis. Principal strain distributions were analysed, and strain ratio εCT for strain patterns over the cervical and trochanteric regions was computed. The ratio εCT in the femora with cervical fractures (mean ± SD 1.103 ± 0.127) differed from that in trochanteric fractures (0.925 ± 0.137) (p = 0.001). The significant difference in the strain ratio between fracture types remained after accounting for femoral neck and trochanteric BMD (p = 0.014), showing that it is independent of BMD. Area under the ROC curve was 0.858 in the discrimination of fracture types. The model predicted the experimental fracture type correctly in 22 of 26 cases. The cervical versus trochanteric region principal strain ratio differed significantly between femora with experimental cervical versus trochanteric fractures, and 85% agreement was achieved for the occurrence of hip fracture types using a simple FE model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Bergot C, Bousson V, Meunier A, Laval-Jeantet M, Laredo JD (2002) Hip fracture risk and proximal femur geometry from DXA scans. Osteoporos Int 13:542–550

    Article  PubMed  CAS  Google Scholar 

  2. Bessho M, Ohnishi I, Okazaki H, Sato W, Kominami H, Matsunaga S, Nakamura K (2004) Prediction of the strength and fracture location of the femoral neck by CT-based finite-element method: a preliminary study on patients with hip fracture. J Orthop Sci 9:545–550

    Article  PubMed  Google Scholar 

  3. Bessho M, Ohnishi I, Matsuyama J, Matsumoto T, Imai K, Nakamura K (2007) Prediction of strength and strain of the proximal femur by a CT-based finite element method. J Biomech 40:1745–1753

    Article  PubMed  Google Scholar 

  4. Cody DD, Gross GJ, Hou FJ, Spencer HJ, Goldstein SA, Fyhrie DP (1999) Femoral strength is better predicted by finite element models than QCT and DXA. J Biomech 32:1013–1020

    Article  PubMed  CAS  Google Scholar 

  5. Duchemin L, Mitton D, Jolivet E, Bousson V, Laredo JD, Skalli W (2008) An anatomical subject-specific FE-model for hip fracture load prediction. Comput Methods Biomech Biomed Eng 11:105–111

    CAS  Google Scholar 

  6. Eckstein F, Wunderer C, Boehm H, Kuhn V, Priemel M, Link TM, Lochmüller EM (2004) Reproducibility and side differences of mechanical tests for determining the structural strength of the proximal femur. J Bone Miner Res 19:379–385

    Article  PubMed  Google Scholar 

  7. Geris L, Gerisch A, Maes C, Carmeliet G, Weiner R, Vander Sloten J, Van Oosterwyck H (2006) Mathematical modeling of fracture healing in mice: comparison between experimental data and numerical simulation results. Med Biol Eng Comput 44:280–289

    Article  PubMed  Google Scholar 

  8. Gnudi S, Ripamonti C, Lisi L, Fini M, Giardino R, Giavaresi G (2002) Proximal femur geometry to detect and distinguish femoral neck fractures from trochanteric fractures in postmenopausal women. Osteoporos Int 13:69–73

    Article  PubMed  CAS  Google Scholar 

  9. Gómez-Benito MJ, García-Aznar JM, Doblaré M (2005) Finite element prediction of proximal femoral fracture patterns under different loads. J Biomech Eng 127:9–14

    Article  PubMed  Google Scholar 

  10. Greenspan SL, Myers ER, Kiel DP, Parker RA, Hayes WC, Resnick NM (1998) Fall direction, bone mineral density, and function: risk factors for hip fracture in frail nursing home elderly. Am J Med 104:539–545

    Article  PubMed  CAS  Google Scholar 

  11. Gregory JS, Testi D, Stewart A, Undrill PE, Reid DM, Aspden RM (2004) A method for assessment of the shape of the proximal femur and its relationship to osteoporotic hip fracture. Osteoporos Int 15:5–11

    Article  PubMed  CAS  Google Scholar 

  12. Holzer G, von Skrbensky G, Holzer LA, Pichl W (2009) Hip fractures and the contribution of cortical versus trabecular bone to femoral neck strength. J Bone Miner Res 24:468–474

    Article  PubMed  Google Scholar 

  13. Isaksson H, Gröngröft I, Wilson W, van Donkelaar CC, van Rietbergen B, Tami A, Huiskes R, Ito K (2009) Remodeling of fracture callus in mice is consistent with mechanical loading and bone remodeling theory. J Orthop Res 27:664–672

    Article  PubMed  Google Scholar 

  14. Keaveny TM, Hoffmann PF, Singh M, Palermo L, Bilezikian JP, Greenspan SL, Black DM (2008) Femoral bone strength and its relation to cortical and trabecular changes after treatment with PTH, alendronate, and their combination as assessed by finite element analysis of quantitative CT scans. J Bone Miner Res 23:1974–1982

    Article  PubMed  CAS  Google Scholar 

  15. Keyak JH (2001) Improved prediction of proximal femoral fracture load using nonlinear finite element models. Med Eng Phys 23:165–173

    Article  PubMed  CAS  Google Scholar 

  16. Keyak JH, Falkinstein Y (2003) Comparison of in situ and in vitro CT scan-based finite element model predictions of proximal femoral fracture load. Med Eng Phys 25:781–787

    Article  PubMed  Google Scholar 

  17. Keyak JH, Rossi SA (2000) Prediction of femoral fracture load using finite element models: an examination of stress- and strain-based failure theories. J Biomech 33:209–214

    Article  PubMed  CAS  Google Scholar 

  18. Keyak JH, Rossi SA, Jones KA, Skinner HB (1998) Prediction of femoral fracture load using automated finite element modeling. J Biomech 31:125–133

    Article  PubMed  CAS  Google Scholar 

  19. Keyak JH, Rossi SA, Jones KA, Les CM, Skinner HB (2001) Prediction of fracture location in the proximal femur using finite element models. Med Eng Phys 23:657–664

    Article  PubMed  CAS  Google Scholar 

  20. Lengsfeld M, Schmitt J, Alter P, Kaminsky J, Leppek R (1998) Comparison of geometry-based and CT voxel-based finite element modelling and experimental validation. Med Eng Phys 20:515–522

    Article  PubMed  CAS  Google Scholar 

  21. Lotz JC, Cheal EJ, Hayes WC (1991) Fracture prediction for the proximal femur using finite element models: part I—linear analysis. J Biomech Eng 113:353–360

    Article  PubMed  CAS  Google Scholar 

  22. Lotz JC, Cheal EJ, Hayes WC (1991) Fracture prediction for the proximal femur using finite element models: part II—nonlinear analysis. J Biomech Eng 113:361–365

    Article  PubMed  CAS  Google Scholar 

  23. Mautalen CA, Vega EM, Einhorn TA (1996) Are the etiologies of cervical and trochanteric hip fractures different? Bone 18:133S–137S

    Article  PubMed  CAS  Google Scholar 

  24. Nikander R, Kannus P, Dastidar P, Hannula M, Harrison L, Cervinka T, Narra NG, Aktour R, Arola T, Eskola H, Soimakallio S, Heinonen A, Hyttinen J, Sievänen H (2008) Targeted exercises against hip fragility. Osteoporos Int 20:1321–1328

    Article  PubMed  Google Scholar 

  25. Oden ZM, Selvitelli DM, Bouxsein ML (1999) Effect of local density changes on the failure load of the proximal femur. J Orthop Res 17:661–667

    Article  PubMed  CAS  Google Scholar 

  26. Ota T, Yamamoto I, Morita R (1999) Fracture simulation of the femoral bone using the finite-element method: how a fracture initiates and proceeds. J Bone Miner Metab 17:108–112

    Article  PubMed  CAS  Google Scholar 

  27. Parkkari J, Kannus P, Palvanen M, Natri A, Vainio J, Aho H, Vuori I, Järvinen M (1999) Majority of hip fractures occur as a result of a fall and impact on the greater trochanter of the femur: a prospective controlled hip fracture study with 206 consecutive patients. Calcif Tissue Int 65:183–187

    Article  PubMed  CAS  Google Scholar 

  28. Partanen J, Jämsä T, Jalovaara P (2001) Influence of the upper femur and pelvic geometry on the risk and type of hip fractures. J Bone Miner Res 16:1540–1546

    Article  PubMed  CAS  Google Scholar 

  29. Pulkkinen P, Partanen J, Jalovaara P, Jämsä T (2004) Combination of bone mineral density and upper femur geometry improves the prediction of hip fracture. Osteoporos Int 15:274–280

    Article  PubMed  Google Scholar 

  30. Pulkkinen P, Eckstein F, Lochmüller EM, Kuhn V, Jämsä T (2006) Association of geometric factors and failure load level with the distribution of cervical vs. trochanteric hip fractures. J Bone Miner Res 21:895–901

    Article  PubMed  Google Scholar 

  31. Schott AM, Cormier C, Hans D, Favier F, Hausherr E, Dargent-Molina P, Delmas PD, Ribot C, Sebert JL, Breart G, Meunier PJ (1998) How hip and whole-body bone mineral density predict hip fracture in elderly women: the EPIDOS Prospective Study. Osteoporos Int 8:247–254

    Article  PubMed  CAS  Google Scholar 

  32. Schott AM, Hans D, Duboeuf F, Dargent-Molina P, Hajri T, Bréart G, Meunier PJ, EPIDOS Study Group (2005) Quantitative ultrasound parameters as well as bone mineral density are better predictors of trochanteric than cervical hip fractures in elderly women. Results from the EPIDOS study. Bone 37:858–863

    Article  PubMed  CAS  Google Scholar 

  33. Verhulp E, van Rietbergen B, Huiskes R (2008) Load distribution in the healthy and osteoporotic human proximal femur during a fall to the side. Bone 42:30–35

    Article  PubMed  CAS  Google Scholar 

  34. Voo L, Armand M, Kleinberger M (2004) Stress fracture risk analysis of the human femur based on computational biomechanics. Johns Hopkins APL Tech Dig 25:223–230. http://techdigest.jhuapl.edu/td2503/Voo.pdf

Download references

Acknowledgments

The authors acknowledge Dr. Miika Nieminen for his valuable comments on the manuscript. The study was supported by the Finnish Funding Agency for Technology and Innovation (grant nr. 40463/05), the International Graduate School of Biomedical Engineering, the Academy of Finland, as well as a grant of the Deutsche Forschungsgemeinschaft (DFG LO 730/3-1), and the Finnish Cultural Foundation, North Ostrobothnia Regional fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Janne E. M. Koivumäki.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koivumäki, J.E.M., Thevenot, J., Pulkkinen, P. et al. Does femoral strain distribution coincide with the occurrence of cervical versus trochanteric hip fractures? An experimental finite element study. Med Biol Eng Comput 48, 711–717 (2010). https://doi.org/10.1007/s11517-010-0622-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-010-0622-1

Keywords

Navigation