Skip to main content
Log in

The possibility of determination of accuracy of performance just before the onset of a reaching task using movement-related cortical potentials

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

This study aimed to examine the relationships among electroencephalogram parameters as physiological indices, ballistic movement as an index of operation, and accuracy of task performance. Experiments were conducted using a “reaching” task, in which subjects touched the target appearing 300 pixels away from a start point in a vertical direction on a touch-sensitive screen with the forefinger. During experiments, EEG, EMG as trigger, high-speed camera images, and task efficiency were acquired. Significant differences between the high- and low-performance groups were clearly confirmed on the slope of NS (negative slope) in movement-related cortical potentials (MRCPs) acquired from Fz (p < 0.05) and Cz (p < 0.05). Furthermore, a difference between these groups was confirmed in duration of ballistic movement. Based on our findings, we discuss whether it is possible to extract MRCP rapidly and automatically without using signal averaging and also to estimate accuracy just before a motion is executed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Accot J, Zhai S (1997) Beyond Fitts’ law: models for trajectory-based HCI tasks. In: Proceedings of CHI’97, pp 295–302

  2. Allison BZ, Wolpaw EW, Wolpaw JR (2007) Brain–computer interface systems: progress and prospects. Expert Rev Med Devices 4(4):463–474

    Article  PubMed  Google Scholar 

  3. Barrett G, Shibasaki H, Neshige RA (1985) Computer-assisted method for averaging movement-related cortical potentials with respect to EMG onset. Electroencephalogr Clin Neurophysiol 60(3):276–281

    Article  CAS  PubMed  Google Scholar 

  4. Barrett G et al (1986) Cortical potential shifts preceding voluntary movements are normal in parkinsonism. Electroencephalogr Clin Neurophysiol 63:340–348

    Article  CAS  PubMed  Google Scholar 

  5. Bernstein PS, Scheffers MK, Coles MGH (1995) “Where did I go wrong?” A psychophysiological analysis of error detection. J Exp Psychol Hum Percept Perform 21(6):1312–1322

    Article  CAS  PubMed  Google Scholar 

  6. Card SK, Moran TP, Newell A (1983) The psychology of human–computer interaction. Lawrence Erlbaum Associates, NJ

    Google Scholar 

  7. Chen CW, Lin CC, Ju MS (2007) Detecting movement-related EEG change by wavelet decomposition-based neural networks trained with single thumb movement. Clin Neurophysiol 118(4):802–814

    Article  PubMed  Google Scholar 

  8. Dehaene S, Posner MI, Tucker DM (1994) Localization of a neural system for error detection and compensation. Psychol Sci 5(5):303–305

    Article  Google Scholar 

  9. Farina D, do Nascimento OF, Lucas MF, Doncarli C (2007) Optimization of wavelets for classification of movement-related cortical potentials generated by variation of force-related parameters. J Neurosci Methods 162:357–363

    Article  PubMed  Google Scholar 

  10. Farwell LA, Donchin E (1988) Talking off the top of your head: toward a mental prosthesis utilizing event-related brain potentials. Electroencephalogr Clin Neurophysiol 70(6):510–523

    Article  CAS  PubMed  Google Scholar 

  11. Fitts PM, Peterson JR (1964) Information capacity of discrete motor responses. J Exp Psychol 67:103–112

    Article  CAS  PubMed  Google Scholar 

  12. Flash T, Hogan N (1985) The coordination of arm movements an experimentally confirmed mathematical model. J Neurosci 5:1688–1703

    CAS  PubMed  Google Scholar 

  13. Flowers K (1975) Ballistic and corrective movement on an aiming task. Neurology 25:413–421

    CAS  PubMed  Google Scholar 

  14. Gan KC, Hoffmann E (1988) Geometrical conditions for ballistic and visually controlled movements. Ergonomics 31(5):829–839

    Article  CAS  PubMed  Google Scholar 

  15. Gehring WJ, Goss B, Coles MGH, Meyer DM, Donchin E (1993) A neural system for error detection and compensation. Psychol Sci 4(6):385–390

    Article  Google Scholar 

  16. Gopher D, Sanders AF (1984) S-Oh-R: Oh stages! Oh resources! In: Prinz W, Sanders AF (eds) Cognition and motor processes. Springer, Berlin

    Google Scholar 

  17. Gu Y, do Nascimento OF, Lucas MF, Farina D (2009) Identification of task parameters from movement-related cortical potentials. Med Biol Eng Comput 47:1257–1264

    Article  PubMed  Google Scholar 

  18. Hallet M (1994) Movement-related cortical potentials. Electromyogr Clin Neurophysiol 34:5–13

    Google Scholar 

  19. Harris CM, Wolpert DM (1998) Signal-dependent noise determinations motor planning. Nature 394:780–784

    Article  CAS  PubMed  Google Scholar 

  20. Hoffmann U, Vesin JM, Ebrahimi T, Diserens K (2007) An efficient P300-based brain–computer interface for disabled subjects. J Neurosci Methods 167(1):115–125

    Article  PubMed  Google Scholar 

  21. Ishida A, Masuda T, Inaoka H, Fukuoka Y (2009) Stability of the human upright stance depending on the frequency of external disturbances. Med Biol Eng Comput 46:213–221

    Article  Google Scholar 

  22. Johnson NL, Kotz S, Balakrishnan N (1994) Continuous univariate distributions, vol 1. Wiley, New York

    Google Scholar 

  23. Johnston J, Rearick M, Slobounov S (2001) Movement-related cortical potentials associated with progressive muscle fatigue in a grasping task. Clin Neurophysiol 112:68–77

    Article  CAS  PubMed  Google Scholar 

  24. Kawato M (1993) Optimization and learning in neural networks for formation and control of coordinated movement. In: Meyer D, Kornblum S (eds) Attention and performance XIV. MIT Press, Cambridge, pp 821–849

    Google Scholar 

  25. Kornhuber HH, Deecke L (1965) Hirnpotentialanderungen bei Willkurbewegungen und passiven Bewegungen des Menschen Bereitschafts potential und reaffernte potentiale. Pfligers Arch Gesamte Physiol Menschen Tiere 284:1–17

    Article  CAS  Google Scholar 

  26. Kroemer KHE, Grandjean E (1997) Fitting the task to the human. Taylor & Francis, London

    Google Scholar 

  27. Lenhardt A, Kaper M, Ritter HJ (2008) An adaptive P300-based online brain-computer interface. IEEE Trans Neural Syst Rehabil Eng 16(2):121–130

    Article  PubMed  Google Scholar 

  28. Luu P, Flaisch T, Tucker DM (2000) Medial frontal cortex in action monitoring. J Neurosci 20(1):464–469

    CAS  PubMed  Google Scholar 

  29. MacKay DM, MacKay V (1991) Behind the eye. Basil Blackwell, Oxford

    Google Scholar 

  30. McFarland DJ, Miner LA, Vaughan TM, Wolpaw JR (2000) Mu and beta rhythm topographies during motor imagery and actual movements. Brain Topogr 12(3):177–186

    Article  CAS  PubMed  Google Scholar 

  31. Megaw ED (1974) Possible modification to a rapid on-going programmed manual response. Brain Res 71:425–441

    Article  CAS  PubMed  Google Scholar 

  32. Morris CH, Leung YK (2006) Pilot mental workload: how well do pilots really perform? Ergonomics 49(15):1581–1596

    Article  PubMed  Google Scholar 

  33. Norman AD (1981) Categorization of action slips. Psychol Rev 88:1–15

    Article  Google Scholar 

  34. Oldfield RC (1971) The assessment and analysis of handedness: the Edinburgh Inventory. Neuropsychologia 9:97–113

    Article  CAS  PubMed  Google Scholar 

  35. Olvet DM, Hajcak G (2008) The error-related negativity (ERN) and psychopathology: toward an endophenotype. Clin Psychol Rev 28:1343–1354

    Article  PubMed  Google Scholar 

  36. Pineda JA (2005) The functional significance of mu rhythms: translating “seeing” and “hearing” into “doing”. Brain Res Brain Res Rev 50(1):57–68

    Article  PubMed  Google Scholar 

  37. Pineda JA, Allison BZ, Vankov A (2000) The effects of self-movement, observation, and imagination on mu rhythms and readiness potentials (RP’s): toward a brain–computer interface (BCI). IEEE Trans Rehabil Eng 8(2):219–222

    Article  CAS  PubMed  Google Scholar 

  38. Pratt J, Abrams RA (1996) Practice and component submovements: the roles of programming and feedback in rapid aimed limb movements. J Mot Behav 28(2):149–156

    Article  PubMed  Google Scholar 

  39. Rasmussen J (1986) Information processing and human–machine interaction: an approach to cognitive engineering. Elsevier Science, NY

    Google Scholar 

  40. Revelle W (1991) Individual differences in personality and motivation: ‘non-cognitive’ determinants of cognitive performance. In: Baddeley A, Weiskrantz L (eds) Awareness control. Clarendon Press, Oxford

    Google Scholar 

  41. Shibasaki H, Hallett M (2006) What is the Bereitschafts potential? Clin Neurophysiol 117(11):2341–2356

    Article  PubMed  Google Scholar 

  42. Sinkjaer T, Haugland M, Inmann A, Hansen M, Nielsen KD (2003) Biopotentials as command and feedback signals in functional electrical stimulation systems. Med Eng Phys 25(1):29–40

    Article  PubMed  Google Scholar 

  43. Slobounov S, Johnston J, Chiang H, Ray W (2002) Movement-related EEG potentials are force or end-effector dependent: evidence from a multi-finger experiment. Clin Neurophysiol 113:1125–1135

    Article  CAS  PubMed  Google Scholar 

  44. Tecce JJ, Gips J, Olivieri CP, Pok LJ, Consiglio MR (1998) Eye movement control of computer functions. Int J Psychophysiol 29(3):319–325

    Article  CAS  PubMed  Google Scholar 

  45. Uno Y, Kawato M, Suzuki R (1989) Formation and control of optimal trajectory in human multijoint arm movement—minimum torque-change model. Biol Cybern 61(2):89–101

    Article  CAS  PubMed  Google Scholar 

  46. Ward DJ, MacKay DJ (2002) Artificial intelligence: fast hands-free writing by gaze direction. Nature 418(6900):838

    Article  CAS  PubMed  Google Scholar 

  47. Yamamoto J, Ikeda A, Satow T et al (2004) Human eye fields in the frontal lobe as studied by epicortical recording of movement-related cortical potentials. Brain 127:873–887

    Article  PubMed  Google Scholar 

  48. Young MS, Stanton NA (2007) What’s skill got to do with it? Vehicle automation and driver mental workload. Ergonomics 50(8):1324–1339

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satoshi Suzuki.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Suzuki, S., Matsui, T., Sakaguchi, Y. et al. The possibility of determination of accuracy of performance just before the onset of a reaching task using movement-related cortical potentials. Med Biol Eng Comput 48, 845–852 (2010). https://doi.org/10.1007/s11517-010-0664-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-010-0664-4

Keywords

Navigation