Skip to main content

Advertisement

Log in

A robust sliding mode controller with internal model for closed-loop artificial pancreas

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

The study presents a robust closed-loop sliding mode controller with internal model for blood glucose control in type-1 diabetes. Type-1 diabetic patients depend on external insulin delivery to keep their blood glucose within near-normal ranges. Closed-loop artificial pancreas is developed to help avoid dangerous, potentially life-threatening hypoglycemia, as well as to prevent complication-inducing hyperglycemia. The proposed controller is designed using a combination of sliding mode and internal model control techniques. To enhance postprandial performance, a feedforward controller is added to inject insulin bolus. Simulation studies have been performed to test the controller, which revealed that the proposed control strategy is able to control the blood glucose well within the safe limits in the presence of meals and measurements errors. The controller shows acceptable robustness against changes in insulin sensitivity, model–patient mismatch, and errors in estimating meal’s contents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Abu-Rmileh A, Garcia-Gabin W (2010) Feedforward-feedback multiple predictive controllers for glucose regulation in type 1 diabetes. Comput Meth Programs Biomed 99(1):113–123

    Article  Google Scholar 

  2. Abu-Rmileh A, Garcia-Gabin W, Zambrano D (2010) Internal model sliding mode control approach for glucose regulation in type 1 diabetes. Biomed Signal Process Control 5(2):94–102

    Article  Google Scholar 

  3. Bequette B (2005) A critical assessment of algorithms and challenges in the development of a closed-loop artificial pancreas. Diabetes Technol Ther 7(1):28–46

    Article  CAS  PubMed  Google Scholar 

  4. Bergman R, Ider Y, Bowden C, Cobelli C (1979) Quantitative estimation of insulin sensitivity. Am J Physiol 236:E667

    CAS  PubMed  Google Scholar 

  5. Breton M, Kovatchev B (2008) Analysis, modeling, and simulation of the accuracy of continuous glucose sensors. J Diabetes Sci Technol 2(5):853–862

    PubMed  Google Scholar 

  6. Camacho O, Rojas R, Garcia-Gabin W (1999) Variables structure control to inverse response systems with dead time. ISA Trans 38(1):87–99

    Article  Google Scholar 

  7. Camacho O, Rojas R, Garcia-Gabin W (2007) Some long time delay sliding mode control approaches. ISA Trans 46(1):95–101

    Article  PubMed  Google Scholar 

  8. Chee F, Fernando T (2007) Closed-loop control of blood glucose. Springer, London

    Google Scholar 

  9. Dalla Man C, Camilleri M, Cobelli C (2006) A system model of oral glucose absorption: validation on gold standard data. IEEE Trans Biomed Eng 53(12):2472–2478

    Article  PubMed  Google Scholar 

  10. Dalla Man C, Rizza R, Cobelli C (2007) Meal simulation model of the glucose-insulin system. IEEE Trans Biomed Eng 54(10):1740–1749

    Article  PubMed  Google Scholar 

  11. Dua P, Doyle III F, Pistikopoulos E (2009) Multi-objective blood glucose control for type 1 diabetes. Med Biol Eng Comput 47(3):343–52

    Article  PubMed  Google Scholar 

  12. Fabietti P, Canonico V, Federici M, Benedetti M, Sarti E (2006) Control oriented model of insulin and glucose dynamics in type 1 diabetics. Med Biol Eng Comput 44(1–2):69–78

    Article  PubMed  Google Scholar 

  13. Garcia-Gabin W, Vehí J, Bondia J, Tarín C, Calm R (2008) Robust sliding mode closed-loop glucose control with meal compensation in type 1 diabetes mellitus. In: 17th IFAC World Congress, Seoul, Korea, pp 4240–4245

  14. Garcia-Gabin W, Dorado F, Bordons C (2010) Real-time implementation of a sliding mode controller for air supply on a PEM fuel cell. J Process Control 20(3):325–336

    Article  CAS  Google Scholar 

  15. Hovorka R, Shojaee-Moradie F, Carroll P, Chassin L, Gowrie I, Jackson N, Tudor R, Umpleby A, Jones R (2002) Partitioning glucose distribution/transport, disposal, and endogenous production during IVGTT. Am J Physiol Endocrinol Metab 282(5):992–1007

    Google Scholar 

  16. Hovorka R, Canonico V, Chassin L, Haueter U, Massi-Benedetti M, Orsini Federici M, Pieber T, Schaller H, Schaupp L, Vering T, Wilinska M (2004) Nonlinear model predictive control of glucose concentration in subjects with type 1 diabetes. Physiol Meas 25(4):905–920

    Article  PubMed  Google Scholar 

  17. Hovorka R, Wilinska M, Chassin L, Dunger D (2006) Roadmap to the artificial pancreas. Diabetes Res Clin Pract 74(2):S178–S182

    Article  Google Scholar 

  18. Hovorka R, Acerini C, Allen J, Chassin L, Larsen A, De Palma A, Wilinska M, Dunger D (2008) Overnight sc-sc closedloop control improves glucose control and reduces risk of hypoglycaemia in children and adolescents with type 1 diabetes. Diabetes 57(Suppl 1):A22

    Google Scholar 

  19. Klonoff D (2005) Continuous glucose monitoring, roadmap for 21st century diabetes therapy. Diabetes Care 28(5):1231–1239

    Article  PubMed  Google Scholar 

  20. Kovatchev B, Clarke W, Breton M, Brayman K, McCall A (2005) Quantifying temporal glucose variability in diabetes via continuous glucose monitoring: mathematical methods and clinical application. Diabetes Technol Ther 7(6):849–862

    Article  CAS  PubMed  Google Scholar 

  21. Kovatchev B, Otto E, Cox D, Gonder-Frederick L, Clarke W (2006) Evaluation of a new measure of blood glucose variability in diabetes. Diabetes Care 29(11):2433–2438

    Article  CAS  PubMed  Google Scholar 

  22. Lee H, Bequette B (2009) A closed-loop artificial pancreas based on model predictive control: human friendly identification and automatic meal disturbance rejection. Biomed Signal Process Control 4(4):347–354

    Article  Google Scholar 

  23. Magni L, Raimondo D, Dalla Man C, De Nicolao G, Kovatchev B, Cobelli C (2009) Model predictive control of type 1 diabetes: an in silico trial. Biomed Signal process control 4(4):338–346

    Article  Google Scholar 

  24. Marchetti G, Barolo M, Jovanovic L, Zisser H, Seborg D (2008) A feedforward-feedback glucose control strategy for type 1 diabetes mellitus. J Process Control 18(2):149–162

    Article  CAS  PubMed  Google Scholar 

  25. Palerm C, Zisser H, Jovanovic L, Doyle III F (2007) A run-to-run control strategy to adjust basal insulin infusion rates in type 1 diabetes. J Process Control 18(3–4):258–265

    Article  CAS  PubMed  Google Scholar 

  26. Ramprasad Y, Rangaiah G, Lakshminarayanan S (2006) Enhanced IMC for glucose control in type i diabetic using a detalied physiological model. Food Bioprod Process 84(C3):227–336

    Article  CAS  Google Scholar 

  27. Scheiner G, Boyer B (2005) Characteristics of basal insulin requirements by age and gender in type 1 diabetes patients using insulin pump therapy. Diabetes Res Clin Pract 69(1):14–21

    Article  CAS  PubMed  Google Scholar 

  28. Slotine J, Li W (1991) Applied nonlinear control. Prentice-Hall, Upper Saddle River

    Google Scholar 

  29. Smith CA, Corripio AB (1997) Principles and practice of automatic process control, 2nd edn. Wiley, New York

    Google Scholar 

  30. Sorensen J (1985) A physiologic model of glucose metabolism in man and its use to design and assess improved insulin therapies for diabetes. Ph.D. thesis, Department of Chemical Engineering, MIT

  31. Steil G, Pantaleon A, Rebrin K (2004) Closed-loop insulin delivery—the path to physiological glucose control. Adv Drug Delivery Rev 56(2):125–144

    Article  CAS  Google Scholar 

  32. Steil G, Rebrin K, Darwin C, Hariri F, Saad M (2006) Feasibility of automating insulin delivery for the treatment of type 1 diabetes. Diabetes 55(12):3344–3350

    Article  CAS  PubMed  Google Scholar 

  33. Utkin V (1981) Sliding modes in control and optimization. Springer, Moscow

    Google Scholar 

  34. Utkin V, Guldner J, Shi J (1999) Sliding modes in electromechanical systems. Taylor-Francis, London

    Google Scholar 

  35. Weinzimer SA, Steil G, Karena S, Dziura J, Kurtiz N, Tamborlane W (2008) Fully automated closed-loop insulin delivery versus semiautomated hybrid control in pediatric patients with type 1 diabetes using an artificial pancreas. Diabetes Care 31(5):934–939

    Article  PubMed  Google Scholar 

  36. Yamaguchi M, Kaseda C, Yamazaki K, Kobayashi M (2006) Prediction of blood glucose level of type 1 diabetics using response surface methodology and data mining. Med Biol Eng Comput 44(6):451–457

    Article  CAS  PubMed  Google Scholar 

  37. Zinober A (1994) Variable structure and Lyapunov control. Springer, London

    Book  Google Scholar 

Download references

Acknowledgement

Amjad Abu-Rmileh acknowledges the BR research grant of the University of Girona.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amjad Abu-Rmileh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abu-Rmileh, A., Garcia-Gabin, W. & Zambrano, D. A robust sliding mode controller with internal model for closed-loop artificial pancreas. Med Biol Eng Comput 48, 1191–1201 (2010). https://doi.org/10.1007/s11517-010-0665-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-010-0665-3

Keywords

Navigation