Skip to main content

Advertisement

Log in

Estimation of the retainer height biomechanical contribution in posterior resin-bonded fixed partial dentures: a structural-thermal coupled finite element analysis

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

This study determines the RBFPD (resin-bonded fixed partial dentures) biomechanical aspects to retainer height using structural-thermal coupled finite element (FE) analysis under normal (37°C) and high (51°C) oral temperatures. Three RBFPD FE models with different retainer heights (100, 75, and 50% of the distance from 2 mm above the CE (cementum-enamel) junction to the occlusal surface) were created using image processing, contour stacking, and mapping mesh procedures. After FE model validation, the maximum first principal and von Mises stresses in the remaining tooth (σT) and prosthesis (σP), were recorded for all models under structural-thermal coupled analyses. The simulation results showed that the σT and σp values decreased with greater retainer height as a result of the increasing prosthesis stiffness and maximizing bonding area between the enamel and retainer at normal oral temperature (37°C). However, no significant stress differences were found according to the retainer height varying dimensions at high (51°C) temperatures. The RBFPD retainer height biomechanical response is dominated by the structural analysis result (at 37°C) and it is recommended that the prosthesis retainer have as great a height as possible to decrease the stress values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Benzing UR, Gall H, Weber H (1995) Biomechanical aspects of two different implant- prosthetic concepts for edentulous maxillae. Int J Oral Maxillofac Implant 10:188–198

    CAS  Google Scholar 

  2. Boccaccio A, Prendergast PJ, Pappalettere C, Kelly DJ (2008) Tissue differentiation and bone regeneration in an osteotomized mandible: a computational analysis of the latency period. Med Biol Eng Comput 46:283–298

    Article  CAS  PubMed  Google Scholar 

  3. Botelho M (1999) Resin-bonded prostheses: the current state of development. Quintessence Int 30:525–534

    CAS  PubMed  Google Scholar 

  4. Caputo AA, Standlee JP (1987) Biomechanics in clinical dentistry. Quintessence Publishing, Chicago, pp 123–149

    Google Scholar 

  5. Chang YH, Lin WH, Kuo WC, Chang CY, Lin CL (2009) Mechanical interactions of cuspal-coverage designs and cement thickness in a cusp-replacing ceramic premolar restoration: a finite element study. Med Biol Eng Comput 47:367–374

    Article  PubMed  Google Scholar 

  6. Creugers NH, Kayser AF (1992) An analysis of multiple failures of resin-bonded bridges. J Dent 20:348–351

    Article  CAS  PubMed  Google Scholar 

  7. Dimashjieh MR, Al-Shammery AR (2000) Long-term survival of sleeve-designed fixed partial dentures: a clinical report. J Prosthet Dent 84:591–593

    Article  Google Scholar 

  8. El-Mowafy O, Rubo MHM (2000) Retention of a posterior resin-bonded fixed partial denture with a modified design: an in vitro study. Int J Prosthodont 13:425–431

    CAS  PubMed  Google Scholar 

  9. Eshleman JR, Janus CE, Jones CR (1988) Tooth preparation designs for resin-bonded fixed partial dentures related to enamel thickness. J Prosthet Dent 60:18–22

    Article  CAS  PubMed  Google Scholar 

  10. Farah JW, Craig RG, Meroueh KA (1989) Finite element analysis of three- and four-unit bridges. J Oral Rehabil 16:603–611

    Article  CAS  PubMed  Google Scholar 

  11. Fenner DN, Robinson PB, Cheung PMY (1998) Three-dimensional finite element analysis of thermal shock in a premolar with a composite resin MOD restoration. Med Eng Phys 20:269–275

    Article  CAS  PubMed  Google Scholar 

  12. Gale MS, Darvell BW (1999) Thermal cycling procedures for laboratory testing of dental restorations. J Dent 27:89–99

    Article  CAS  PubMed  Google Scholar 

  13. Goel VK, Khera SC, Gurusami S, Chen RC (1992) Effect of cavity depth on stresses in a restored tooth. J Prosthet Dent 67:174–183

    Article  CAS  PubMed  Google Scholar 

  14. Lin CL, Chang CH, Cheng CS, Lee HE (1999) Three dimensional finite element meshing generation for maxillary second premolar. Comput Methods Programs Biomed 59:187–195

    Article  CAS  PubMed  Google Scholar 

  15. Lin CL, Lin TS, Hsu KW, Wu CH, Chang CH (2003) Numerical investigation of retainer thickness affecting retention in posterior resin-bonded prosthesis using the finite element method. J Chin Inst Eng 6:781–789

    Google Scholar 

  16. Lin CL, Hsu KW, Wu CH (2005) Multi-factorial retainer design analysis of posterior resin-bonded fixed partial dentures: a finite element study. J Dent 33:711–720

    Article  CAS  PubMed  Google Scholar 

  17. Lin CL, Chang YH, Lin YF (2008) Combining structural-thermal coupled field FE analysis and the Taguchi method to evaluate the relative contributions of multi-factors in a premolar adhesive MOD restoration. J Dent 36:626–636

    Article  CAS  PubMed  Google Scholar 

  18. Morris HF (1989) Veterans Administration Cooperative Studies Project No. 147/242, part VII: the mechanical properties of metal ceramic alloys as cast and after simulated porcelain firing. J Prosthet Dent 61:160–169

    Article  CAS  PubMed  Google Scholar 

  19. Priest G (1995) An eleven-year reevaluation of resin-bonded fixed partial dentures. Int J Periodont Restor Dent 15:239–247

    Google Scholar 

  20. Provatidis CG (2000) A comparative FEM—study of tooth mobility using isotropic and anisotropic models of the periodontal ligament Finite Element Method. Med Eng Phys 22:359–370

    Article  CAS  PubMed  Google Scholar 

  21. Rochette AL (1973) Attachment of a splint to enamel of lower anterior teeth. J Prosthet Dent 30:418–423

    Article  CAS  PubMed  Google Scholar 

  22. Sato Y, Yuasa Y, Abe Y, Akagawa Y (1995) Finite element and Weibull analysis to estimate failure risk in resin-bonded retainers. Int J Prosthodont 8:73–78

    CAS  PubMed  Google Scholar 

  23. Toms SR, Dakin GJ, Lemons JE, Eberhardt AW (2002) Quasi-linear viscoelastic behavior of the human periodontal ligament. J Biomech 35:1411–1415

    Article  PubMed  Google Scholar 

  24. Toparli M, Aykul H, Sasaki S (2003) Temperature and thermal stress analysis of a crowned maxillary second premolar tooth using three-dimensional finite element method. J Oral Rehabil 30:99–105

    Article  CAS  PubMed  Google Scholar 

  25. Yang HS, Lang LA, Guckes AD, Felton DA (2001) The effect of thermal change on various dowel-and-core restorative materials. J Prosthet Dent 86:74–80

    Article  CAS  PubMed  Google Scholar 

  26. Yoshida N, Koga Y, Peng CL, Tanaka E, Kobayashi K (2001) In vivo measurement of the elastic modulus of the human periodontal ligament. Med Eng Phys 23:567–572

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen-Jen Chang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chang, WJ., Lin, CL. Estimation of the retainer height biomechanical contribution in posterior resin-bonded fixed partial dentures: a structural-thermal coupled finite element analysis. Med Biol Eng Comput 48, 1115–1122 (2010). https://doi.org/10.1007/s11517-010-0666-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-010-0666-2

Keywords

Navigation