Skip to main content

Advertisement

Log in

A hybrid approach for the control of axonal outgrowth: preliminary simulation results

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

The possible control of axonal outgrowth during neural regeneration could be very useful not only from a neurobiological point of view, but also in the field of neural interfaces. In this manuscript, simulations are presented which investigate the possibility of guiding axons by using a hybrid approach based on the combined used of a chemical model and of a genetic algorithm. Microspheres embedding chemical cues on the basis of information provided by a genetic algorithm are placed to impose a desired trajectory on the axons. Two kinds of simulations were carried out: (i) tracking of linear trajectories; (ii) tracking of trajectories, which were reconstructed from real axonal extension. The results achieved during the simulations seem to confirm the possible use of this approach to guide axonal outgrowth, being the obtained trajectories congruent to possible actual situations. Moreover, the model can be easily extended to a three-dimensional environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Cao X, Schoichet MS (1999) Delivering neuroactive molecules from biodegradable microspheres for application in central nervous system disorders. Biomaterials 20:329–339

    Article  CAS  PubMed  Google Scholar 

  2. Chan L, Lee H, Heng P (2002) Production of alginate microspheres by internal gelation using an emulsification method. Int J Pharm 242:259–262

    Article  CAS  PubMed  Google Scholar 

  3. Chang X, Lilly JH (2004) Evolutionary design of a fuzzy classifier from data. IEEE Trans Syst Man Cybern B Cybern 34:1894–1906

    Article  PubMed  Google Scholar 

  4. Ciofani G, Raffa V, Menciassi A, Micera S, Dario P (2007) A drug delivery system based on alginate microspheres: mass-transport test and in vitro validation. Biomed Microdevices 9:395–403

    Article  CAS  PubMed  Google Scholar 

  5. Ciofani G, Raffa V, Menciassi A, Cuschieri A, Micera S (2009) Magnetic alginate microspheres: system for the position controlled delivery of nerve growth factor. Biomed Microdevices 11:517–527

    Article  CAS  PubMed  Google Scholar 

  6. Dario P, Garzella P, Toro M, Micera S, Alavi M, Meyer U, Valderrama E, Sebastiani L, Ghelarducci B, Mazzoni C, Pastacaldi P (1998) Neural interfaces for regenerated nerve stimulation and recording. IEEE Trans Rehabil Eng 6:353–363

    Article  CAS  PubMed  Google Scholar 

  7. Deb K, Anand A, Joshi D (2002) A computationally efficient evolutionary algorithm for real-parameter optimization. Evol Comput 10:371–395

    Article  PubMed  Google Scholar 

  8. Dhillon GS, Horch KW (2005) Direct neural sensory feedback and control of a prosthetic arm. IEEE Trans Neural Syst Rehabil Eng 13:468–472

    Article  PubMed  Google Scholar 

  9. Edell DJ (1986) A peripheral nerve information transducer for amputees: long-term multichannel recordings from rabbit peripheral nerves. IEEE Trans Biomed Eng 33:203–214

    Article  CAS  PubMed  Google Scholar 

  10. Faix J, Rottner K (2006) The making of filopodia. Curr Opin Cell Biol 18:18–25

    Article  CAS  PubMed  Google Scholar 

  11. Goodhill GJ (1997) Diffusion in axon guidance. Eur J Neurosci 9:1414–1421

    Article  CAS  PubMed  Google Scholar 

  12. Goodhill GJ (1998) Mathematical guidance for axons. Trends Neurosci 21:226–231

    Article  CAS  PubMed  Google Scholar 

  13. Goodhill GJ, Gu M, Urbach JS (2004) Predicting axonal response to molecular gradients with a computational model of filopodial dynamics. Neural Comput 16:2221–2243

    Article  PubMed  Google Scholar 

  14. Grill WM, Norman SE, Bellamkonda RV (2009) Implanted neural interfaces: biochallenges and engineered solutions. Annu Rev Biomed Eng 11:1–24

    Article  CAS  PubMed  Google Scholar 

  15. Höke A, Redett R, Hameed H, Jari R, Zhou C, Li ZB, Griffin JW, Brushart TM (2006) Schwann cells express motor and sensory phenotypes that regulate axon regeneration. J Neurosci 26:9646–9655

    Article  PubMed  Google Scholar 

  16. Holland JH (1975) Adaptation in natural and artificial systems. MIT Press, Cambridge

  17. Hudson TW, Evans GR, Schmidt CE (1999) Engineering strategies for peripheral nerve repair. Clin Plast Surg 26:617–628

    CAS  PubMed  Google Scholar 

  18. Jin Y, Branke J (2005) Evolutionary optimization in uncertain environments—a survey. IEEE Trans Evol Comput 9:303–317

    Article  Google Scholar 

  19. Krottje JK, van Ooyen A (2007) A mathematical framework for modeling axon guidance. Bull Math Biol 69:3–31

    Article  PubMed  Google Scholar 

  20. Lago N, Ceballos D, Rodríguez FJ, Stieglitz T, Navarro X (2005) Long term assessment of axonal regeneration through polyimide regenerative electrodes to interface the peripheral nerve. Biomaterials 26:2021–2031

    Article  CAS  PubMed  Google Scholar 

  21. Li GH, Qin CD (1996) A model for neurite growth and neuronal morphogenesis. Math Biosci 132:97–110

    Article  CAS  PubMed  Google Scholar 

  22. Maskery S, Shinbrot T (2005) Deterministic and stochastic elements of axonal guidance. Annu Rev Biomed Eng 7:187–221

    Article  CAS  PubMed  Google Scholar 

  23. Maysinger D, Krieglstein K, Filipovic-Grcic J, Sendtner M, Unsicker K, Richardson P (1996) Microencapsulated ciliary neurotrophic factor: physical properties and biological activities. Exp Neurol 138:177–188

    Article  CAS  PubMed  Google Scholar 

  24. Mezura-Montes E, Coello CAC (2005) A simple multimembered evolution strategy to solve constrained optimization problems. IEEE Trans Evol Comput 9:1–17

    Article  Google Scholar 

  25. Micera S, Citi L, Rigosa J, Carpaneto J, Raspopovic S, Dipino G, Rossini L, Yoshida K, Rossini PM (2010) Decoding sensory and motor information from neural signals recorded using intraneural electrodes: towards the development of a neurocontrolled hand prosthesis. Proc IEEE 98:407–417

    Article  Google Scholar 

  26. Micera S, Navarro X (2009) Bidirectional interfaces with the peripheral nervous system. Int Rev Neurobiol 86:23–38

    Article  PubMed  Google Scholar 

  27. Micera S, Carrozza M, Vecchi F, Beccai L, Dario P (2006) Hybrid bionic systems for the replacement of hand function. Proc IEEE 94:1752–1762

    Article  Google Scholar 

  28. Michalewicz Z (1994) Genetic algorithms + data structures = evolution programs. Springer-Verlag New York, Inc., New York, NY, USA

    Google Scholar 

  29. Millesi H, Ganglberger J, Berger A (1967) Erfharungen mit der Mikrochirurgie peripherer. Nerven Chir Plast 3:47

    Google Scholar 

  30. Ming G, Henley J, Tessier-Lavigne M, Song H, Poo M (2001) Electrical activity modulates growth cone guidance by diffusible factors. Neuron 29:441–452

    Article  CAS  PubMed  Google Scholar 

  31. Navarro X, Krueger TB, Lago N, Micera S, Stieglitz T, Dario P (2005) A critical review of interfaces with the peripheral nervous system for the control of neuroprostheses and hybrid bionic systems. J Peripher Nerv Syst 10:229–258

    Article  PubMed  Google Scholar 

  32. Ramachandran A, Schuettler M, Lago N, Doerge T, Koch KP, Navarro X, Hoffmann KP, Stieglitz T (2006) Design, in vitro and in vivo assessment of a multi-channel sieve electrode with integrated multiplexer. J Neural Eng 3:114–124

    Article  PubMed  Google Scholar 

  33. Riso RR (1999) Strategies for providing upper extremity amputees with tactile and hand position feedback—moving closer to the bionic arm. Technol Health Care 7:401–409

    CAS  PubMed  Google Scholar 

  34. Rudolph G (1994) Convergence analysis of canonical genetic algorithms. IEEE Trans Neural Netw 5:96–101

    Article  CAS  PubMed  Google Scholar 

  35. Segev R, Ben-Jacob E (2000) Generic modeling of chemotactic based self-wiring of neural networks. Neural Netw 13:185–199

    Article  CAS  PubMed  Google Scholar 

  36. Yu TW, Bargmann CI (2001) Dynamic regulation of axon guidance. Nat Neurosci 4:1169–1176

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Silvestro Micera.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ciofani, G., Sergi, P.N., Carpaneto, J. et al. A hybrid approach for the control of axonal outgrowth: preliminary simulation results. Med Biol Eng Comput 49, 163–170 (2011). https://doi.org/10.1007/s11517-010-0687-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-010-0687-x

Keywords

Navigation